Abstract

In this paper, the hazard criteria for thermal radiation and shock wave overpressure applicable to the deflagration of urban gas pipelines have been proposed. The phast software is used to analyze the hazard intensity and degree of pipeline deflagration. Based on the hazard criteria, the situation of personnel and object damage is determined, and targeted risk control points are proposed. The influence of the parameters of wind speed, atmospheric stability, air humidity, and operating pressure on the deflagration hazard is studied. The work presented in this paper can provide a reference for the disaster assessment and safety management of urban gas pipelines.

References

1.
Liang
,
X. B.
,
Ma
,
W. F.
,
Ren
,
J. J.
,
Dang
,
W.
,
Wang
,
K.
,
Nie
,
H. L.
,
Cao
,
J.
, and
Yao
,
T.
,
2022
, “
An Integrated Risk Assessment Methodology Based on Fuzzy TOPSIS and Cloud Inference for Urban Polyethylene Gas Pipelines
,”
J. Clean. Prod.
,
376
, p.
134332
.10.1016/j.jclepro.2022.134332
2.
Li
,
Q. C.
, and
He
,
S.
,
2021
, “
Research on Effect Factors of Mechanical Response of Cross-Fault Buried Gas Pipeline Based on Fluid-Structure Interaction
,”
ASME J. Pressure Vessels Technol.
,
143
(
6
), p.
061402
.10.1115/1.4051366
3.
Rofooei
,
F. R.
,
Jalali
,
H. H.
,
Attari
,
N. K. A.
,
Kenarangi
,
H.
, and
Samadian
,
M.
,
2015
, “
Parametric Study of Buried Steel and High Density Polyethylene Gas Pipelines Due to Oblique-Reverse Faulting
,”
Can. J. Civ. Eng.
,
42
(
3
), pp.
178
189
.10.1139/cjce-2014-0047
4.
Shan
,
K.
,
Shuai
,
J.
,
Yang
,
G.
,
Meng
,
W.
,
Wang
,
C.
,
Zhou
,
J. X.
,
Wu
,
X.
, and
Shi
,
L.
,
2020
, “
Numerical Study on the Impact Distance of a Jet Fire Following the Rupture of a Natural Gas Pipeline
,”
Int. J. Pressure Vessels Pip.
,
187
, p.
104159
.10.1016/j.ijpvp.2020.104159
5.
Guo
,
Y. B.
,
He
,
L. G.
,
Wang
,
D. G.
, and
Liu
,
S. H.
,
2016
, “
Numerical Investigation of Surface Conduit Parallel Gas Pipeline Explosive Based on the TNT Equivalent Weight Method
,”
J. Loss. Prevent. Proc.
,
44
, pp.
360
368
.10.1016/j.jlp.2016.10.006
6.
Ji
,
B.
,
Wang
,
X. Y.
, and
Xiang
,
Y.
,
2021
, “
Numerical Simulation on Hazardous Chemical Warehouse Pool Fire With FDS Model
,”
J. Saf. Sci. Technol.
,
17
(
S1
), pp.
81
85
.
7.
Xie
,
X. L.
,
Xiong
,
Y. M.
,
Xie
,
W. K.
,
Li
,
J. J.
, and
Zhang
,
W. H.
,
2022
, “
Quantitative Risk Analysis of Oil and Gas Fires and Explosions for FPSO Systems in China
,”
Processes
,
10
(
5
), p.
902
.10.3390/pr10050902
8.
Zhou
,
S. N.
,
Wang
,
Z. Q.
, and
Li
,
Q. Z.
,
2022
, “
A Conceptual Framework Integrating Numerical Simulation With System Theory Based Method for Quantitative Explosion Process Hazard Analysis
,”
Process Saf. Environ. Prot.
,
166
, pp.
202
211
.10.1016/j.psep.2022.08.003
9.
Song
,
B.
,
Jiao
,
W. L.
,
Cen
,
K.
,
Tian
,
X. H.
,
Zhang
,
H. Y.
, and
Lu
,
W.
,
2021
, “
Quantitative Risk Assessment of Gas Leakage and Explosion Accident Consequences Inside Residential Buildings
,”
Eng. Failure Anal.
,
122
, p.
105257
.10.1016/j.engfailanal.2021.105257
10.
Wang
,
K.
,
Liu
,
Z. Y.
,
Qian
,
X. M.
, and
Huang
,
P.
,
2017
, “
Long-Term Consequence and Vulnerability Assessment of Thermal Radiation Hazard From LNG Explosive Fireball in Open Space Based on Full-Scale Experiment and PHAST
,”
J. Loss Prevent Proc.
,
46
, pp.
13
22
.10.1016/j.jlp.2017.01.001
You do not currently have access to this content.