Abstract

Reinforced thermoplastic pipe (RTP), which consists of thermoplastic matrix and reinforced layers, has many advantages such as good flexibility, corrosion resistance, and long service life. It has been used in oil and gas transportation pipeline industry for several decades. However, for in large diameter (OD > 250 mm) and high-pressure (PN ≥ 3.5 MPa) RTP, nonuniform spacing of the wire winding is a common occurrence due to a large number of steel wires used on the composite pipe. This irregularity leads to significant variability in the burst pressure, limiting the development of the RTP for high-pressure and large-diameter applications. In this paper, the mechanical properties of a large diameter and high-pressure of RTP are studied, with emphasis on the effect of nonuniform spacing of reinforced steel wires on short-term burst pressure. A multilayer stress–strain model considering the elastic properties of steel wire and high-density polyethylene (HDPE) was established. Considering the uneven distribution of steel wire, an analytical method for predicting short-term burst pressure is proposed. Ultrasonic phased array technology is used to measure the actual position and distance of the steel wire. It is observed that nonuniform spacing may lead to uneven stress distribution, and some wires reach their load-bearing limits prematurely. In order to verify the model, short-term burst tests were carried out, and the experimental results were in good agreement with the theoretical predictions, confirming the effectiveness of the model in capturing the effect of spacing on RTP performance.

References

1.
ISO
,
2006
, “
Plastics Pipes and Fittings—Reinforced Thermoplastics Pipe Systems for the Supply of Gaseous Fuels for Pressures up to 4 MPa (40 Bar)
,” ISO, Geneva, Switzerland, Standard No.
ISO/TS 18226.
2.
Bakar
,
M. A. A.
,
Mustaffa
,
Z.
,
Idris
,
N. N.
, and
Ben Seghier
,
M. E. A.
,
2021
, “
Experimental Program on the Burst Capacity of Reinforced Thermoplastic Pipe (RTP) Under Impact of Quasi-Static Lateral Load
,”
Eng. Failure Anal.
,
128
, p.
105626
.10.1016/j.engfailanal.2021.105626
3.
Guoquan
,
Q.
,
Hongxia
,
Y.
,
Dongtao
,
Q.
,
Bin
,
W.
, and
Houbu
,
L.
,
2019
, “
Analysis of Cracks in Polyvinylidene Fluoride Lined Reinforced Thermoplastic Pipe Used in Acidic Gas Fields
,”
Eng. Failure Anal.
,
99
, pp.
26
33
.10.1016/j.engfailanal.2019.01.079
4.
Kong
,
L.
,
Li
,
H.
,
Wei
,
B.
,
Zhu
,
W.
,
Li
,
X.
,
Yan
,
Z.
,
Chen
,
Q.
,
Liang
,
X.
, and
Xia
,
M.
,
2023
, “
Torsion-Induced Failure of a Reinforced Thermoplastic Pipe Used in a Gas Lift System
,”
Eng. Failure Anal.
,
144
, p.
106980
.10.1016/j.engfailanal.2022.106980
5.
Melot
,
D.
,
2018
, “
Present and Future Composites Requirements for the Offshore Oil and Gas Industry
,”
Durability of Composites in a Marine Environment 2 (Solid Mechanics and Its Applications)
,
Springer
,
Cham, Switzerland
, pp.
151
172
.
6.
Okolie
,
O.
,
Latto
,
J.
,
Faisal
,
N.
,
Jamieson
,
H.
,
Mukherji
,
A.
, and
Njuguna
,
J.
,
2023
, “
Advances in Structural Analysis and Process Monitoring of Thermoplastic Composite Pipes
,”
Heliyon
,
9
(
7
), p.
e17918
.10.1016/j.heliyon.2023.e17918
7.
Van
,
O. M.
,
De
,
K. J.
, and
Steuten
,
B.
,
2012
, “
Advancements in Thermoplastic Composite Riser Development
,”
ASME
Paper No. OMAE2012-84167.10.1115/OMAE2012-84167
8.
Amaechi
,
C. V.
,
Wang
,
F.
,
Ja'e
,
I. A.
,
Aboshio
,
A.
,
Odijie
,
A. C.
, and
Ye
,
J.
,
2022
, “
A Literature Review on the Technologies of Bonded Hoses for Marine Applications
,”
Ships Offshore Struct.
,
17
(
12
), pp.
2819
2850
.10.1080/17445302.2022.2027682
9.
Lou
,
A.
,
Lim
,
D.
,
Katsman
,
I.
,
Huang
,
L.
,
Jiang
,
Q.
,
Lim
,
S. N.
, and
de
,
S. A. C.
,
2020
, “
Neural Manifold Ordinary Differential Equations
,”
Adv. Neural Infor. Proces. Sys.
, 33, pp. 17548–17558.https://proceedings.neurips.cc/paper/2020/file/cbf8710b43df3f2c1553e649403426df-Paper.pdf
10.
Manoj
,
Prabhakar
,
M.
,
Rajini
,
N.
,
Ayrilmis
,
N.
,
Mayandi
,
K.
,
Siengchin
,
S.
,
Senthilkumar
,
K.
,
Karthikeyan
,
S.
, and
Ismail
,
S. O.
,
2019
, “
An Overview of Burst, Buckling, Durability and Corrosion Analysis of Lightweight FRP Composite Pipes and Their Applicability
,”
Compos. Struct.
,
230
, p.
111419
.10.1016/j.compstruct.2019.111419
11.
Xia
,
M.
,
Takayanagi
,
H.
, and
Kemmochi
,
K.
,
2001
, “
Analysis of Multi-Layered Filament-Wound Composite Pipes Under Internal Pressure
,”
Compos. Struct.
,
53
(
4
), pp.
483
491
.10.1016/S0263-8223(01)00061-7
12.
Kobayashi
,
S.
,
Imai
,
T.
, and
Wakayama
,
S.
,
2007
, “
Burst Strength Evaluation of the FW-CFRP Hybrid Composite Pipes Considering Plastic Deformation of the Liner
,”
Composites, Part A
,
38
(
5
), pp.
1344
1353
.10.1016/j.compositesa.2006.10.011
13.
Zheng
,
J.
,
Shi
,
J.
,
Shi
,
J.
,
Zhong
,
S.
,
Rao
,
J.
,
Li
,
G.
, and
Li
,
X.
,
2015
, “
Short-Term Burst Pressure of Polyethylene Pipe Reinforced by Winding Steel Wires Under Various Temperatures
,”
Compos. Struct.
,
121
, pp.
163
171
.10.1016/j.compstruct.2014.11.014
14.
Wang
,
Y.
,
Lou
,
M.
,
Zeng
,
X.
,
Dong
,
W.
, and
Wang
,
S.
,
2021
, “
Burst Capacity of Reinforced Thermoplastic Pipes Based on Progressive Failure Criterion
,”
Ocean Eng.
,
234
, p.
109001
.10.1016/j.oceaneng.2021.109001
15.
Wang
,
B.
,
Liu
,
X.
,
Zhang
,
H.
,
Liu
,
X.
, and
Xu
,
L.
,
2021
, “
A Combined Experimental and Numerical Simulation Approach for Burst Pressure Analysis of Fiber-Reinforced Thermoplastic Pipes
,”
Ocean Eng.
,
236
, p.
109517
.10.1016/j.oceaneng.2021.109517
16.
Caravaca
,
D. S.
,
Bird
,
C. R.
, and
Kleiner
,
D.
,
2007
, “
Ultrasonic Phased Array Inspection of Electrofusion Joints in Polyethylene Pipes
,”
Insight-Non-Destr. Test. Cond. Monit.
,
49
, pp.
83
86
.10.1784/insi.2007.49.2.83
17.
Gebhardt
,
W.
,
1983
, “
Improvement of Ultrasonic Testing by Phased Arrays
,”
Nucl. Eng. Des.
,
76
(
3
), pp.
275
283
.10.1016/0029-5493(83)90111-5
18.
Zheng
,
J.
,
Lin
,
X.
, and
Lu
,
Y.
,
2006
, “
Stress Analysis of Plastic Pipe Reinforced by Cross Helically Wound Steel Wires
,”
ASME
Paper No. PVP2006-ICPVT-11-93071.10.1115/PVP2006-ICPVT-11-93071
19.
Chou
,
P. C.
,
Carleone
,
J.
, and
Hsu
,
C. M.
,
1972
, “
Elastic Constants of Layered Media
,”
J. Compos. Mater.
,
6
(
1
), pp.
80
93
.10.1177/002199837200600107
20.
Onder
,
A.
,
Sayman
,
O.
,
Dogan
,
T.
, and
Tarakcioglu
,
N.
,
2009
, “
Burst Failure Load of Composite Pressure Vessels
,”
Compos. Struct.
,
89
(
1
), pp.
159
166
.10.1016/j.compstruct.2008.06.021
You do not currently have access to this content.