Abstract

This study attempted for the proposal and analysis of a combined cycle that consists of a wet ethanol-fueled and turbocharged homogeneous charge compression ignition (HCCI) engine coupled to ejector refrigeration cycle (ERC) and absorption refrigeration cycle (ARC) for the simultaneous generation of two distinct outputs, namely, power and refrigeration. Both first and second laws of thermodynamics were employed to develop a thermodynamic model, which has been applied to investigate the performance of combined cycle. Furthermore, performance of the combined cycle for ERC versus ARC was compared and assessed after altering operating parameters (turbocharger pressure ratio, turbocharger compressor efficiency, ambient temperature, and the entrainment ratio of ERC and generator temperature of ARC) to study their effect on engine power output, refrigeration load, exergy of refrigeration, and energy and exergy efficiencies of the cooling-power cogeneration cycle. Results show that the elevated pressure of turbocharger results in the enhancement of HCCI engine power and increase of the refrigeration of thermal load, simultaneously. However, the increasing ambient temperature shows the decline of HCCI engine efficiencies and energy efficiency of cogeneration, while the cogeneration cycle exergy efficiency is found increasing. Furthermore, the results are reported for the refrigeration performed by lithium bromide–water (LiBr–H2O)-operated ARC, and R134a- and R290-operated ERC, respectively. Mapping of exergy destruction for the presented cogeneration cycle discovered HCCI engine, boiler of ERC, generator of ARC, and catalytic convertor as the components of significant exergy destruction. Entrainment ratio and type of refrigerant employed in ERC and the generator temperature of ARC show a marginal impact on the COPs of these cycles.

References

1.
Armstead
,
J. R.
, and
Miers
,
S. A.
,
2014
, “
Review of Waste Heat Recovery Mechanisms for Internal Combustion Engine
,”
ASME J. Therm. Sci. Eng. Appl.
,
6
(
1
), p.
014001
.
2.
Srinivas
,
K. K.
,
Mago
,
P. J.
, and
Krishnan
,
S. R.
,
2010
, “
Analysis of Exhaust Waste Heat Recovery From a Dual Fuel Low Temperature Combustion Engine Using an Organic Rankine Cycle
,”
Energy
,
35
(
6
), pp.
2387
2399
.
3.
Sara
,
H.
,
Chalet
,
D.
, and
Cormerais
,
M.
,
2018
, “
Different Configurations of Exhaust Gas Heat Recovery in Internal Combustion Engine: Evaluation on Different Driving Cycles Using Numerical Simulations
,”
ASME J. Therm. Sci. Eng. Appl.
,
10
(
4
), p.
041010
.
4.
Hill
,
J.
,
2007
, “
Environmental Costs and Benefits of Transportation Biofuel Production From Food and Lignocelluloses-Based Energy Crops: A Review
,”
Agron. Sustainable Dev.
,
27
(
1
), pp.
1
12
.
5.
Ma
,
F.
, and
Wang
,
Y.
,
2008
, “
Study on the Extension of Lean Operation Limit Through Hydrogen Enrichment in a Natural Gas Spark-Ignition Engine
,”
Int. J. Hydrogen Energy
,
33
(
4
), pp.
1416
1424
.
6.
Prashant
,
D. K.
,
Lata
,
D. B.
, and
Joshi
,
P. C.
,
2016
, “
Investigation on the Effect of Ethanol Blend on the Combustion Parameters of Dual Fuel Diesel Engine
,”
Appl. Therm. Eng.
,
96
, pp.
623
631
.
7.
Fagundez
,
J. L. S.
,
Sari
,
R. L.
,
Mayer
,
F. D.
,
Martins
,
M. E. S.
, and
Salau
,
N. P. G.
,
2017
, “
Determination of Optimal Wet Ethanol Composition as a Fuel in Spark Ignited Engine
,”
Appl. Therm. Eng.
,
112
, pp.
317
325
.
8.
Patzek
,
T. W.
,
2004
, “
Thermodynamics of Corn-Ethanol Bio-Fuel Cycle
,”
Crit. Rev. Plant Sci.
,
23
(
6
), pp.
519
567
.
9.
Frias
,
J. M.
,
Aceves
,
S. M.
, and
Flowers
,
D. L.
,
2007
, “
Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet-Ethanol in HCCI Engines
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
332
337
.
10.
Mack
,
J. H.
,
Aceves
,
S. M.
, and
Dibble
,
R. W.
,
2009
, “
Demonstrating Direct use of Wet-Ethanol in a Homogeneous Charge Compression Ignition Engine
,”
Energy
,
34
(
6
), pp.
782
787
.
11.
Yao
,
M. F.
,
Zhang
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.
12.
Christensen
,
M.
,
Johansson
,
B.
, and
Einwall
,
P.
,
1997
, “
Homogeneous Charge Compression Ignition (HCCI) Using Iso-Octane, Ethanol and Natural Gas—A Comparison With Spark Ignition Operation
,”
SAE Technical Paper No. 972874.
13.
Mack
,
J. H.
,
Dibble
,
R. W.
,
Buchholz
,
B. A.
, and
Flowers
,
D. L.
,
2005
, “
The Effect of the Di-Tertiary Butyl Peroxide (DTBP) Additive on HCCI Combustion of Fuel Blends of Ethanol and Di-Ethyl Ether
,”
SAE Technical Paper No. 2005-01-2135.
14.
Rokopoulos
,
C. D.
, and
Giakoumis
,
E. G.
,
2004
, “
Parametric Study of Transient Turbocharged Diesel Engine Operation From the Second law Perspective
,”
SAE Technical Paper No. 2004-01-1679.
15.
Caton
,
J. A.
,
2012
, “
Exergy Destruction During the Combustion Process as Functions of Operating and Design Parameters for a Spark Ignition Engine
,”
Int J. Energy Res.
,
36
(
3
), pp.
368
384
.
16.
Boldaji
,
M. R.
,
Gainey
,
B.
, and
Lawler
,
B.
,
2019
, “
Thermally Stratified Compression Ignition Enabled by wet Ethanol With a Split Injection Strategy: A CFD Simulation Study
,”
Appl. Energy
,
235
, pp.
813
826
.
17.
Saxena
,
S.
,
Schneider
,
S.
,
Aceves
,
S.
, and
Dibble
,
R.
,
2012
, “
Wet Ethanol in HCCI Engines With Exhaust Heat Recovery to Improve the Energy Balance of Ethanol Fuels
,”
Appl. Energy
,
98
, pp.
448
457
.
18.
Khaliq
,
A.
,
Trivedi
,
S. K.
, and
Dincer
,
I.
,
2011
, “
Investigation of a Wet Ethanol Fuelled HCCI Engine Based on First and Second Law Analysis
,”
Appl. Therm. Eng.
,
31
(
10
), pp.
1621
1629
.
19.
Khaliq
,
A.
, and
Trivedi
,
S. K.
,
2012
, “
Second Law Assessment of a Wet-Ethanol Fueled HCCI Engine Combined With Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022201
.
20.
Roman
,
R.
, and
Hernandez
,
J. I.
,
2011
, “
Performance of Ejector Cooling Systems Using Low Ecological Impact Refrigerants
,”
Int. J. Refrig.
,
34
(
7
), pp.
1707
1716
.
21.
Galindo
,
J.
,
Gil
,
A.
,
Dolz
,
V.
, and
Ponce-Mora
,
A.
,
2020
, “
Numerical Optimization of an Ejector for Waste Heat Recovery Used to Cool Down the Intake Air in an Internal Combustion Engine
,”
ASME J. Therm. Sci. Eng. Appl.
,
12
(
5
), p.
051024
.
22.
Jaruwongwittaya
,
T.
, and
Chen
,
G.
,
2012
, “
Application of Two Stage Ejector Cooling System in a Bus
,”
Energy Procedia
,
14
, pp.
187
197
.
23.
Zegenhagen
,
M. T.
, and
Ziegler
,
F.
,
2015
, “
Feasibility Analysis of an Exhaust Gas Waste Heat Driven Jet-Ejector Cooling System for Charge Air Cooling of Turbocharged Gasoline Engines
,”
Appl. Energy
,
160
, pp.
221
230
.
24.
Unal
,
S.
,
2015
, “
Determination of the Ejector Dimensions of a Bus Air-Conditioning System Using Analytical and Numerical Methods
,”
Appl. Therm. Eng.
,
90
, pp.
110
119
.
25.
Zhang
,
H.
,
Wang
,
L.
,
Jia
,
L.
, and
Wang
,
X.
,
2018
, “
Performance Investigation of Automobile Waste Heat Recovery System for Ejector Refrigeration Cycle
,”
13th IEEE Conference on Industrial Electronics and Applications (ICIEA)
,
May 31–June 2
,
Wuhan, China
, pp.
400
405
.
26.
Koehler
,
J.
,
Tegethoff
,
W. J.
,
Westphalen
,
D.
, and
Sonnekalb
,
M.
,
1997
, “
Absorption Refrigeration System for Mobile Applications Utilizing Exhaust Gases
,”
Heat Mass Transfer
,
32
(
5
), pp.
333
340
.
27.
Manzela
,
A. A.
,
Hanriot
,
S. M.
,
Cabezas-Gomez
,
L.
, and
Sodre
,
J. R.
,
2010
, “
Using Engine Exhaust Gas as Energy Source for an Absorption Refrigeration System
,”
Appl. Energy
,
87
(
4
), pp.
1141
1148
.
28.
Turns
,
S. R.
, and
Kraige
,
D. R.
,
2007
,
Properties Tables Booklet for Thermal Fluids Engineering
,
Cambridge University Press
,
New York
.
29.
Khaliq
,
A.
,
Habib
,
M. A.
, and
Choudhary
,
K. A.
,
2019
, “
Thermo-Environmental Evaluation of a Modified Combustion gas Turbine Plant
,”
ASME J. Energy Resour. Technol.
,
141
(
4
), p.
042004
.
30.
Seckin
,
C.
,
2019
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012001
.
31.
Heywood
,
J. B.
,
1998
,
Internal Combustion Engines Fundamentals
,
McGraw Hill
,
New York
.
32.
Steinhilber
,
T.
, and
Sattelmayer
,
T.
,
2006
, “
The Effect of Water Addition on HCCI Diesel Combustion
,”
SAE Technical Paper No. 2006-01-3321.
33.
Klein
,
S. A.
,
2012
, “
Engineering Equation Solver (EES) for Microsoft Windows Operating Systems: Academic Professional Version: F-Chart Software
,” Version 9.1, Madison, WI, https://fchartsoftware.com/
34.
REFPROP
,
2013
, “
NIST Reference Thermodynamic and Transport Properties
,” Version 9.1.
35.
Chua
,
H. T.
,
Toh
,
H. K.
,
Malek
,
A.
,
Ng
,
K. C.
, and
Srinivasan
,
K.
,
2000
, “
Improved Thermodynamic Property Fields of LiBr-H2O Solutions
,”
Int. J. Refrig.
,
23
(
6
), pp.
412
429
.
36.
Dhahad
,
H. A.
,
Hussen
,
H. M.
,
Nguyen
,
P. T.
,
Ghaebi
,
H.
, and
Ashraf
,
M. A.
,
2020
, “
Thermodynamic and Thermoeconomic Analysis of Innovative Integration of Kalina and Absorption Refrigeration Cycles for Simultaneously Cooling and Power Generation
,”
Energy Convers. Manage.
,
203
, p.
112241
.
37.
Saxena
,
S.
,
Bedoya
,
I. D.
,
Shah
,
N.
, and
Phadke
,
A.
,
2013
, “
Understanding Loss Mechanisms and Identifying Areas of Improvement for HCCI Engines Using Detailed Exergy Analysis
,”
ASME J. Eng. Gas Turbines Power
,
135
(
9
), p.
091505
.
38.
Khaliq
,
A.
,
2017
, “
Energetic and Exergetic Performance Investigation of a Solar Based Integrated System for Cogeneration of Power and Cooling
,”
Appl. Therm. Eng.
,
112
, pp.
1305
1316
.
39.
Shokati
,
N.
,
Ranjbar
,
F.
, and
Yari
,
M. A.
,
2018
, “
Comprehensive Exergoeconomic Analysis of Absorption Power and Cooling Cogeneration Cycles Based on Kalina Part I: Simulation
,”
Energy Convers. Manage.
,
158
, pp.
437
459
.
You do not currently have access to this content.