Abstract

This paper investigates the effect of trapezoidal baffles inside a planar-type solid oxide fuel cell. To achieve the objective, four cases are proposed: (1) simple planar geometry as a base case, (2) trapezoidal baffles inside the fuel channel, (3) trapezoidal baffles inside the air channel, and (4) trapezoidal baffles in both fuel and air channels. The height of the trapezoidal baffles inside the channels of the solid oxide fuel cell increases along the direction of the fluid flow. The numerical investigation is based on a three-dimensional computational fluid dynamics (CFD) model that takes into account the phenomenon of mass transfer, heat transfer, species transport, and electrochemical reactions. A detailed comparison of the performance between the four cases of the fuel cell is provided in terms of power density, fluid flow, species concentration, temperature distributions, and electric fields at a variable current density and a fixed power density of 3000 W/m2. The results show that the power density, the velocity, the availability of the hydrogen and oxygen species on the electrodes-electrolyte interfaces increases for case 2, case 3, and case 4, respectively, in comparison to case 1. Finally, the average temperature of the electrode–electrolyte interface is reduced with the baffles, and it is concluded that the configuration with baffles inside the air channel (case 3) shows better results in terms of the increment of the power density and the decrement of the average temperature.

References

1.
Stigka
,
E. K.
,
Paravantis
,
J. A.
, and
Mihalakakou
,
G. K.
,
2014
, “
Social Acceptance of Renewable Energy Sources: a Review of Contingent Valuation Applications
,”
Renewable Sustainable Energy Rev.
,
32
(
1
), pp.
100
106
.
2.
Dincer
,
I.
, and
Acar
,
C.
,
2015
, “
Review and Evaluation of Hydrogen Production Methods for Better Sustainability
,”
Int. J. Hydrogen Energy
,
40
(
34
), pp.
11094
11111
.
3.
Choudhury
,
A.
,
Chandra
,
H.
, and
Arora
,
A.
,
2013
, “
Application of Solid Oxide Fuel Cell Technology for Power Generation—A Review
,”
Renewable Sustainable Energy Rev.
,
20
(
1
), pp.
430
442
.
4.
Bacigalupo
,
A.
,
Morini
,
L.
, and
Piccolroaz
,
A.
,
2014
, “
Effective Elastic Properties of Planar SOFCs: a Non-Local Dynamic Homogenization Approach
,”
Int. J. Hydrogen Energy
,
39
(
27
), pp.
15017
15030
.
5.
Dong
,
S. K.
,
Jung
,
W. N.
,
Rashid
,
K.
, and
Kashimoto
,
A.
,
2016
, “
Design and Numerical Analysis of a Planar Anode-Supported SOFC Stack
,”
Renewable Energy
,
94
(
1
), pp.
637
650
.
6.
Tushar
,
C.
,
Sahu
,
M. K.
, and
Sanjay
,
2017
, “
CFD Modeling of SOFC Cogeneration System for Building Application
,”
Energy Procedia
,
109
(
1
), pp.
361
368
.
7.
Tushar
,
C.
, and
Sanjay
,
2017
, “
Thermodynamic Assessment of Advanced SOFC-Blade Cooled Gas Turbine Hybrid Cycle
,”
Int. J. Hydrogen Energy
,
42
(
15
), pp.
10248
10263
.
8.
Hosseinpour
,
J.
,
Chitsaz
,
A.
,
Eisavi
,
B.
, and
Yari
,
M.
,
2018
, “
Investigation on Performance of an Integrated SOFC-Goswami System Using Wood Gasification
,”
Energy
,
148
(
1
), pp.
614
628
.
9.
Lee
,
Y. D.
,
Ahn
,
K. Y.
,
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2018
, “
Exergetic and Exergoeconomic Evaluation of an SOFC-Engine Hybrid Power Generation System
,”
Energy
,
145
(
1
), pp.
810
822
.
10.
Singh
,
A.
, and
Singh
,
O.
,
2021
, “
Investigations on SOFC-HAT-sCO2 Based Combined Power and Heating Cycle
,”
Mater. Today: Proc.
,
38
(
1
), pp.
122
128
.
11.
Ghorbani
,
B.
, and
Vijayaraghavan
,
K.
,
2019
, “
A Review Study on Software Based Modeling of Hydrogen-Fueled Solid Oxide Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
26
), pp.
13700
13727
.
12.
Zhang
,
Z.
,
Yue
,
D.
,
Yang
,
G.
,
Chen
,
J.
,
Zheng
,
Y.
,
Miao
,
H.
,
Wang
,
W.
,
Yuan
,
J.
, and
Huang
,
N.
,
2015
, “
Three-Dimensional CFD Modeling of Transport Phenomena in Multi-Channel Anode-Supported Planar SOFCs
,”
Int. J. Heat Mass Transfer
,
84
(
1
), pp.
942
954
.
13.
Han
,
Z.
,
Wang
,
Y.
,
Yang
,
Z.
, and
Han
,
M.
,
2016
, “
Electrochemical Properties of Tubular SOFC Based on a Porous Ceramic Support Fabricated by Phase-Inversion Method
,”
J. Mater. Sci. Technol.
,
32
(
7
), pp.
681
686
.
14.
Park
,
J.
,
Bae
,
J.
, and
Kim
,
J. Y.
,
2011
, “
The Current Density and Temperature Distributions of Anode-Supported flat-Tube Solid Oxide Fuel Cells Affected by Various Channel Designs
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
9936
9944
.
15.
Park
,
J.
, and
Bae
,
J.
,
2012
, “
Characterization of Electrochemical Reaction and Thermo fluid flow in Metal-Supported Solid Oxide Fuel Cell Stacks with Various Manifold Designs
,”
Int. J. Hydrogen Energy
,
37
(
2
), pp.
1717
1730
.
16.
Shang
,
S.
,
Lu
,
Y.
,
Cao
,
X.
,
Song
,
X.
,
Shi
,
M.
, and
Wang
,
F.
,
2019
, “
A Model for Oxidation-Induced Stress Analysis of Ni-Based Anode Supported Planar Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
44
(
31
), pp.
16956
16964
.
17.
Yang
,
Y.
,
Wang
,
G.
,
Zhang
,
H.
, and
Xia
,
W.
,
2008
, “
Comparison of Heat and Mass Transfer Between Planar and MOLB-Type SOFCs
,”
J. Power Sources
,
177
(
2
), pp.
426
433
.
18.
Stygar
,
M.
,
Brylewski
,
T.
, and
Rękas
,
M.
,
2012
, “
Effects of Changes in MOLB-Type SOFC Cell Geometry on Temperature Distribution and Heat Transfer Rate in Interconnects
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4421
4426
.
19.
Ho
,
T. X.
,
2014
, “
A Three-Dimensional Model for Transient Performance of a Solid Oxide Fuel Cell
,”
Int. J. Hydrogen Energy
,
39
(
12
), pp.
6680
6688
.
20.
Lee
,
S.
,
Kim
,
H.
,
Yoon
,
K. J.
,
Son
,
J. W.
,
Lee
,
J. H.
,
Kim
,
B. K.
,
Choi
,
W.
, and
Hong
,
J.
,
2016
, “
The Effect of Fuel Utilization on Heat and Mass Transfer Within Solid Oxide Fuel Cells Examined by Three-Dimensional Numerical Simulations
,”
Int. J. Heat Mass Transfer
,
97
(
1
), pp.
77
93
.
21.
Bhattacharya
,
D.
,
Mukhopadhyay
,
J.
,
Biswas
,
N.
,
Basu
,
R. N.
, and
Das
,
P. K.
,
2018
, “
Performance Evaluation of Different Bipolar Plate Designs of 3D Planar Anode-Supported SOFCs
,”
Int. J. Heat Mass Transfer
,
123
(
1
), pp.
382
396
.
22.
Chelmehsara
,
M. E.
, and
Mahmoudimehr
,
J.
,
2018
, “
Techno-economic Comparison of Anode-Supported, Cathode-Supported, and Electrolyte Supported SOFCs
,”
Int. J. Hydrogen Energy
,
43
(
32
), pp.
15521
15530
.
23.
Nakajo
,
A.
,
Stiller
,
C.
,
Härkegård
,
G.
, and
Bolland
,
O.
,
2006
, “
Modeling of Thermal Stresses and Probability of Survival of Tubular SOFC
,”
J. Power Sources
,
158
(
1
), pp.
287
294
.
24.
Nakajo
,
A.
,
Wuillemin
,
Z.
,
Herle
,
J. V.
, and
Favrat
,
D.
,
2009
, “
Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Probability of Failure of the Cells
,”
J. Power Sources
,
193
(
1
), pp.
203
215
.
25.
Fardadi
,
M.
,
Mueller
,
F.
, and
Jabbari
,
F.
,
2010
, “
Feedback Control of Solid Oxide Fuel Cell Spatial Temperature Variation
,”
J. Power Sources
,
195
(
13
), pp.
4222
4233
.
26.
Chan
,
S. H.
,
Khor
,
K. A.
, and
Xia
,
Z. T.
,
2001
, “
A Complete Polarization Model of a Solid Oxide Fuel Cell and its Sensitivity to the Change of Cell Component Thickness
,”
J. Power Sources
,
93
(
1–2
), pp.
130
140
.
27.
Qu
,
Z.
,
Aravind
,
P. V.
,
Boksteen
,
S. Z.
,
Dekker
,
N. J. J.
,
Janssen
,
A. H. H.
,
Woudstra
,
N.
, and
Verkooijen
,
A. H. M.
,
2011
, “
Three-dimensional Computational fluid Dynamics Modeling of Anode-Supported Planar SOFC
,”
Int. J. Hydrogen Energy
,
36
(
16
), pp.
10209
10220
.
28.
Costamagna
,
P.
, and
Honegger
,
K.
,
1998
, “
Modeling of Solid Oxide Heat Exchanger Integrated Stacks and Simulation at High Fuel Utilization
,”
J. Electrochem. Soc.
,
145
(
11
), pp.
3995
4007
.
You do not currently have access to this content.