Abstract

Solar thermal energy is trapped in a glass-covered water chamber/basin to provide the heat for evaporation of brackish water in a novel desalination system. To harvest clean water, a chimney is integrated with the water basin, which draws air into the chamber to be humidified by the vapor and then being ventilated via buoyance force. Uniquely, thermal conductive metal sheet is recommended to make the chimney, which allows the vapor in the humid air condenses easily when flowing up. The condensate at the inner wall of the chimney flows down to be collected as clean water. Mathematical modeling and numerical computation have been carried out to delineate the coupling of the buoyance-force-driven flow with the heat and mass transfer of air and water in the solar collection chamber and the condensation of vapor in the heat-dissipating chimney. The objective of the simulation and optimization of the system is to find the best match of the dimensions of the water chamber with a chimney to maximize the production of clean water and energy efficiency. The model has been used to simulation several cases (of water from 40 °C to 50 °C) with available experimental data from the authors’ previous work, and the agreement was satisfactory. The optimization studies found that there is a maximum air flowrate corresponding to a critical chimney height due to the requirement that the chimney is designated to dissipate heat as much as possible to condense water vapor. With the chimney height greater than the critical height, the airflow rate will have a slight decrease. Nevertheless, higher than a critical height is still needed for a chimney to condense more moisture. Optimized chamber diameters at different chimney heights are provided for reference of optimal system designs.

References

1.
Elimelech
,
M.
, and
Phillip
,
W. A.
,
2011
, “
The Future of Seawater Desalination: Energy, Technology, and the Environment
,”
Science
,
333
(
6043
), pp.
712
717
.
2.
Kalogirou
,
S. A.
,
2005
, “
Seawater Desalination Using Renewable Energy Sources
,”
Prog. Energy Combust. Sci.
,
31
(
3
), pp.
242
281
.
3.
Houghton
,
J.
,
2005
, “
Global Warming
,”
Rep. Prog. Phys.
,
68
(
6
), pp.
1343
1403
.
4.
Li
,
C.
,
Goswami
,
Y.
, and
Stefanakos
,
E.
,
2013
, “
Solar Assisted Sea Water Desalination: A Review
,”
Renewable Sustainable Energy Rev.
,
19
, pp.
136
163
.
5.
Alkaisi
,
A.
,
Mossad
,
R.
, and
Sharifian-Barforoush
,
A.
,
2017
, “
A Review of the Water Desalination Systems Integrated With Renewable Energy
,”
Energy Procedia
,
110
, pp.
268
274
.
6.
Zhang
,
Y.
,
Sivakumar
,
M.
,
Yang
,
S.
,
Enever
,
K.
, and
Ramezanianpour
,
M.
,
2018
, “
Application of Solar Energy in Water Treatment Processes: A Review
,”
Desalination
,
428
, pp.
116
145
.
7.
Reif
,
J. H.
, and
Alhalabi
,
W.
,
2015
, “
Solar-Thermal Powered Desalination: Its Significant Challenges and Potential
,”
Renewable Sustainable Energy Rev.
,
48
, pp.
152
165
.
8.
Sharon
,
H.
, and
Reddy
,
K.
,
2015
, “
A Review of Solar Energy Driven Desalination Technologies
,”
Renewable Sustainable Energy Rev.
,
41
, pp.
1080
1118
.
9.
Ghaffour
,
N.
,
Bundschuh
,
J.
,
Mahmoudi
,
H.
, and
Goosen
,
M. F.
,
2015
, “
Renewable Energy-Driven Desalination Technologies: A Comprehensive Review on Challenges and Potential Applications of Integrated Systems
,”
Desalination
,
356
, pp.
94
114
.
10.
Sayyaadi
,
H.
, and
Saffari
,
A.
,
2010
, “
Thermoeconomic Optimization of Multi Effect Distillation Desalination Systems
,”
Appl. Energy
,
87
(
4
), pp.
1122
1133
.
11.
Palenzuela
,
P.
,
Alarcón
,
D.
,
Zaragoza
,
G.
,
Blanco
,
J.
, and
Ibarra
,
M.
,
2013
, “
Parametric Equations for the Variables of a Steady-State Model of a Multi-Effect Desalination Plant
,”
Desalin. Water Treat.
,
51
(
4–6
), pp.
1229
1241
.
12.
Hosseini
,
S. R.
,
Amidpour
,
M.
, and
Behbahaninia
,
A.
,
2011
, “
Thermoeconomic Analysis With Reliability Consideration of a Combined Power and Multi Stage Flash Desalination Plant
,”
Desalination
,
278
(
1–3
), pp.
424
433
.
13.
Cohen-Tanugi
,
D.
,
Lin
,
L.-C.
, and
Grossman
,
J. C.
,
2016
, “
Multilayer Nanoporous Graphene Membranes for Water Desalination
,”
Nano Lett.
,
16
(
2
), pp.
1027
1033
.
14.
Anvari
,
A.
,
Azimi Yancheshme
,
A.
,
Kekre
,
K. M.
, and
Ronen
,
A.
,
2020
, “
State-of-the-Art Methods for Overcoming Temperature Polarization in Membrane Distillation Process: A Review
,”
J. Membr. Sci.
,
616
, p.
118413
.
15.
Shalaby
,
S.
,
2017
, “
Reverse Osmosis Desalination Powered by Photovoltaic and Solar Rankine Cycle Power Systems: A Review
,”
Renewable Sustainable Energy Rev.
,
73
, pp.
789
797
.
16.
Das
,
R.
,
Ali
,
M. E.
,
Abd Hamid
,
S. B.
,
Ramakrishna
,
S.
, and
Chowdhury
,
Z. Z.
,
2014
, “
Carbon Nanotube Membranes for Water Purification: A Bright Future in Water Desalination
,”
Desalination
,
336
, pp.
97
109
.
17.
Dong
,
H.
,
Zhao
,
L.
,
Zhang
,
L.
,
Chen
,
H.
,
Gao
,
C.
, and
Winston Ho
,
W. S.
,
2015
, “
High-Flux Reverse Osmosis Membranes Incorporated With NaY Zeolite Nanoparticles for Brackish Water Desalination
,”
J. Membr. Sci.
,
476
, pp.
373
383
.
18.
Al-Amshawee
,
S.
,
Yunus
,
M. Y. B. M.
,
Azoddein
,
A. A. M.
,
Hassell
,
D. G.
,
Dakhil
,
I. H.
, and
Hasan
,
H. A.
,
2020
, “
Electrodialysis Desalination for Water and Wastewater: A Review
,”
Chem. Eng. J.
,
380
, p.
122231
.
19.
Mettawee
,
E.-B. S.
, and
Assassa
,
G. M.
,
2006
, “
Experimental Study of a Compact PCM Solar Collector
,”
Energy
,
31
(
14
), pp.
2958
2968
.
20.
Zhao
,
D.
,
Li
,
Y.
,
Dai
,
Y.
, and
Wang
,
R.
,
2011
, “
Optimal Study of a Solar Air Heating System With Pebble bed Energy Storage
,”
Energy Convers. Manage.
,
52
(
6
), pp.
2392
2400
.
21.
Nayi
,
K. H.
, and
Modi
,
K. V.
,
2018
, “
Pyramid Solar Still: A Comprehensive Review
,”
Renewable Sustainable Energy Rev.
,
81
, pp.
136
148
.
22.
Fathy
,
M.
,
Hassan
,
H.
, and
Salem Ahmed
,
M.
,
2018
, “
Experimental Study on the Effect of Coupling Parabolic Trough Collector With Double Slope Solar Still on Its Performance
,”
Sol. Energy
,
164
, pp.
54
61
.
23.
Sathyamurthy
,
R.
,
El-Agouz
,
S. A.
,
Nagarajan
,
P. K.
,
Subramani
,
J.
,
Arunkumar
,
T.
,
Mageshbabu
,
D.
,
Madhu
,
B.
,
Bharathwaaj
,
T.
, and
Prakash
,
N.
,
2017
, “
A Review of Integrating Solar Collectors to Solar Still
,”
Renewable Sustainable Energy Rev.
,
77
, pp.
1069
1097
.
24.
Tiwari
,
G.
,
Dimri
,
V.
, and
Chel
,
A.
,
2009
, “
Parametric Study of an Active and Passive Solar Distillation System: Energy and Exergy Analysis
,”
Desalination
,
242
(
1–3
), pp.
1
18
.
25.
Sampathkumar
,
K.
,
Arjunan
,
T.
,
Pitchandi
,
P.
, and
Senthilkumar
,
P.
,
2010
, “
Active Solar Distillation—A Detailed Review
,”
Renewable Sustainable Energy Rev.
,
14
(
6
), pp.
1503
1526
.
26.
Haaf
,
W.
,
Friedrich
,
K.
,
Mayr
,
G.
, and
Schlaich
,
J.
,
1983
, “
Solar Chimneys Part I: Principle and Construction of the Pilot Plant in Manzanares
,”
Int. J. Solar Energy
,
2
(
1
), pp.
3
20
.
27.
Haaf
,
W.
,
1984
, “
Solar Chimneys: Part ii: Preliminary Test Results From the Manzanares Pilot Plant
,”
Int. J. Sustainable Energy
,
2
(
2
), pp.
141
161
.
28.
Zuo
,
L.
,
Zheng
,
Y.
,
Li
,
Z.
, and
Sha
,
Y.
,
2011
, “
Solar Chimneys Integrated With Sea Water Desalination
,”
Desalination
,
276
(
1–3
), pp.
207
213
.
29.
Zuo
,
L.
,
Yuan
,
Y.
,
Li
,
Z.
, and
Zheng
,
Y.
,
2012
, “
Experimental Research on Solar Chimneys Integrated With Seawater Desalination Under Practical Weather Condition
,”
Desalination
,
298
, pp.
22
33
.
30.
Zuo
,
L.
,
Ding
,
L.
,
Chen
,
J.
,
Liu
,
Z.
,
Qu
,
N.
,
Zhou
,
X.
, and
Yuan
,
Y.
,
2018
, “
The Effect of Different Structural Parameters on Wind Supercharged Solar Chimney Power Plant Combined With Seawater Desalination
,”
Energy Convers. Manage.
,
176
, pp.
372
383
.
31.
Zuo
,
L.
,
Liu
,
Z.
,
Zhou
,
X.
,
Ding
,
L.
,
Chen
,
J.
,
Qu
,
N.
, and
Yuan
,
Y.
,
2019
, “
Preliminary Study of Wind Supercharging Solar Chimney Power Plant Combined with Seawater Desalination by Indirect Condensation Freshwater Production
,”
Desalination
,
455
, pp.
79
88
.
32.
Zhou
,
X.
,
Xiao
,
B.
,
Liu
,
W.
,
Guo
,
X.
,
Yang
,
J.
, and
Fan
,
J.
,
2010
, “
Comparison of Classical Solar Chimney Power System and Combined Solar Chimney System for Power Generation and Seawater Desalination
,”
Desalination
,
250
(
1
), pp.
249
256
.
33.
Asayesh
,
M.
,
Kasaeian
,
A.
, and
Ataei
,
A.
,
2017
, “
Optimization of a Combined Solar Chimney for Desalination and Power Generation
,”
Energy Convers. Manage.
,
150
, pp.
72
80
.
34.
Ming
,
T.
,
Gong
,
T.
,
de Richter
,
R. K.
,
Liu
,
W.
, and
Koonsrisuk
,
A.
,
2016
, “
Freshwater Generation From a Solar Chimney Power Plant
,”
Energy Convers. Manage.
,
113
, pp.
189
200
.
35.
Ming
,
T.
,
Gong
,
T.
,
de Richter
,
R. K.
,
Cai
,
C.
, and
Sherif
,
S.
,
2017
, “
Numerical Analysis of Seawater Desalination Based on a Solar Chimney Power Plant
,”
Appl. Energy
,
208
, pp.
1258
1273
.
36.
Ming
,
T.
,
Gong
,
T.
,
de Richter
,
R. K.
,
Wu
,
Y.
, and
Liu
,
W.
,
2017
, “
A Moist air Condensing Device for Sustainable Energy Production and Water Generation
,”
Energy Convers. Manage.
,
138
, pp.
638
650
.
37.
Bonnelle
,
D.
,
2004
, “
Solar Tower, Water Spraying Energy Tower, and Linked Renewable Energy Conversion Devices: Presentation, Critics and Proposals; Tour Solaire, Tour a Vaporisation D'eau, et Modes de Conversion D'energie Renouvelable: Presentation, Critiques et Suggestions
. https://www.osti.gov/etdeweb/biblio/20613580
38.
Krätzig
,
W. B.
,
2013
, “
Physics, Computer Simulation and Optimization of Thermo-Fluid Mechanical Processes of Solar Updraft Power Plants
,”
Sol. Energy
,
98
, pp.
2
11
.
39.
Von Backström
,
T. W.
,
Harte
,
R.
,
Hoffer
,
R.
,
Kratzig
,
W. B.
,
Kroger
,
D. G.
,
Niemann
,
H.-J.
, and
Van Zijl
,
G. P. A. G.
,
2008
, “
State and Recent Advances in Research and Design of Solar Chimney Power Plant Technology
,”
VGB Power Tech
,
88
(
7
), pp.
64
71
.
40.
Zhai
,
Y.
,
Ma
,
Y.
,
David
,
S. N.
,
Zhao
,
D.
,
Lou
,
R.
,
Tan
,
G.
,
Yang
,
R.
, and
Yin
,
X.
,
2017
, “
Scalable-Manufactured Randomized Glass-Polymer Hybrid Metamaterial for Daytime Radiative Cooling
,”
Science
,
355
(
6329
), pp.
1062
1066
.
41.
Hu
,
Q.
,
2019
, “
Studies of Flow and Heat/Mass Transfer in Water Desalination Tower
,”
Master thesis
,
University of Arizona
,
Tucson, AZ
. https://www.proquest.com/pagepdf/2305531143?accountid=8360
42.
Hu
,
Q.
,
Wang
,
X.
,
Gamil
,
A.
, and
Li
,
P.
,
2023
, “
Experimental Study of Desalination Using a System Integrated by a Glass-Covered Solar Collection Water Basin and a Heat Dissipating Chimney
,”
Energy Nexus
,
9
, p.
100171
.
43.
Schlaich
,
J.
,
1995
,
The Solar Chimney: Electricity From the Sun
,
Edition Axel Menges
,
Stuttgart
.
44.
dos S. Bernardes
,
M. A
,
Voß
,
A.
, and
Weinrebe
,
G.
,
2003
, “
Thermal and Technical Analyses of Solar Chimneys
,”
Sol. Energy
,
75
(
6
), pp.
511
524
.
45.
Lienhard IV
,
J. H.
, and
Lienhard V
,
J. H.
,
2005
,
A Heat Transfer Textbook
,
Phlogiston Press
,
Cambridge, MA
.
46.
Bergman
,
T.
,
Lavine
,
A.
,
Incropera
,
F.
, and
DeWitt
,
D.
,
2019
,
Fundamentals of Heat and Mass Transfer
, 8th ed.,
Wiley
,
New York
.
47.
Lloyd
,
J.
, and
Moran
,
W.
,
1974
, “
Natural Convection Adjacent to Horizontal Surface of Various Planforms
,”
ASME J. Heat Transfer
,
96
(
4
), pp.
443
447
.
48.
Elhammeli
,
A. A.
,
Muntasser
,
M. A.
,
Lindblom
,
J.
, and
Nordell
,
B.
,
2017
, “
Producing Water by Condensation of Humid air in Buried Pipe
,”
Proceedings of 7th Annual Conference on Industrial Engineering and Operations Management
,
Rabat, Morocco
,
Apr. 11–13
,
IEOM Society
, pp.
2270
2281
.
49.
Yang
,
S.
, and
Zhang
,
Z.
,
1994
, “
An Experimental Study of Natural Convection Heat Transfer From a Horizontal Cylinder in High Rayleigh Number Laminar and Turbulent Regions
,”
Institution of Chemical Engineers Symposium Series
,
Brighton, UK
,
Aug. 14–18
, Vol.
135
,
Hemisphere Publishing Corporation
, pp.
185
185
.
50.
Tsilingiris
,
P.
,
2008
, “
Thermophysical and Transport Properties of Humid Air at Temperature Range Between 0 and 100 C
,”
Energy Convers. Manage.
,
49
(
5
), pp.
1098
1110
.
51.
Moran
,
M.
,
Shapiro
,
H.
,
Boettner
,
D.
, and
Bailey
,
M.
,
2018
,
Fundamentals of Engineering Thermodynamics
, 9th ed.,
Wiley
,
New York
.
52.
Wilke
,
C.
,
1950
, “
A Viscosity Equation for Gas Mixtures
,”
J. Chem. Phys.
,
18
(
4
), pp.
517
519
.
53.
Reid
,
R. C.
,
Prausnitz
,
J. M.
, and
Poling
,
B. E.
,
1987
,
The Properties of Gases and Liquids
,
McGraw-Hill
,
New York
.
54.
Morvay
,
Z.
, and
Gvozdenac
,
D.
,
2008
,
Applied Industrial Energy and Environmental Management
,
John Wiley & Sons
,
New York
.
55.
Mason
,
E.
, and
Saxena
,
S.
,
1958
, “
Approximate Formula for the Thermal Conductivity of Gas Mixtures
,”
Phys. Fluids
,
1
(
5
), pp.
361
369
.
You do not currently have access to this content.