Abstract

A major current focus of refrigeration and air-conditioning research is energy usage and environmental impact (e.g., the influence of refrigerants and air-conditioning systems on ozone layer depletion and global warming). The ejector-based refrigeration system is a technology that, it is hoped, can save power while using environment-friendly refrigerants to reduce any adverse effects on nature. The reduction of compressor dependency is the first and essential aim of this study; the second is to demonstrate the replacement of R134a with the new refrigerant R1234yf in motor vehicle air-conditioning systems, establishing the benefits of employing R1234yf in conjunction with a hybrid air-conditioning system. In such a system, the engine's exhaust gases are used to operate the ejector. A numerical model has been developed which estimates the ejector entrainment ratio at a specified spindle and primary nozzle exit position. A theoretical model using energy and exergy analysis illustrates the impact of hybrid systems on performance under different operating conditions (i.e., engine exhaust, ambient air, and evaporator temperatures). At a specified exhaust temperature, a detailed comparison has been conducted between a current air-conditioning system with R134a and the hybrid system with R1234yf. It was found that the R1234yf hybrid system reduced compressor energy consumption by 44.43% and operating exhaust heat levels by 12.79%. The coefficient of performance increased by 41.42%, while the exergetic efficiency reduced from 37.14% to 13.85%. Cooling capacity dropped by 12.73%. The hybrid air-conditioning system based on R1234yf demonstrated tremendous potential for improving vehicle air-conditioning system efficiency.

References

1.
Wang
,
S. K.
, and
Shan
,
K. W.
,
1994
,
Handbook of Air Conditioning and Refrigeration
,
McGraw-Hill
,
New York
.
2.
Nagengast
,
B.
,
2002
, “
100 Years of Air Conditioning
,”
ASHRAE J.
,
44
(
6
), pp.
44
46
.
3.
Farrington
,
R.
, and
Rugh
,
J.
,
2000
, “
Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range
,” National Renewable Energy Lab. (NREL), Report No. NREL/CP-540-28960.
4.
Johnson
,
V. H.
,
2002
, “
Fuel Used for Vehicle Air Conditioning: A State-by-State Thermal Comfort-Based Approach
,” SAE Technical Paper No. 2002-01-1957.
5.
Rugh
,
J.
,
Hovland
,
V.
, and
Andersen
,
S. O.
,
2004
, “Significant Fuel Savings and Emission Reductions by Improving Vehicle Air Conditioning,”
Mobile Air Conditioning Summit
,
National Renewable Energy Laboratory (NREL)
,
Washington, DC
.
6.
Lambert
,
M. A.
, and
Jones
,
B. J.
,
2006
, “
Automotive Adsorption Air Conditioner Powered by Exhaust Heat. Part 1: Conceptual and Embodiment Design
,”
Proc. Inst. Mech. Eng. Part D: J. Autom. Eng.
,
7
(
7
), pp.
959
972
.
7.
Huff
,
S.
,
West
,
B.
, and
Thomas
,
J.
,
2013
, “
Effects of Air Conditioner Use on Real-World Fuel Economy
,” SAE Technical Paper No. 2013-01-0551.
8.
Fayazbakhsh
,
M. A.
, and
Bahrami
,
M.
,
2013
, “
Comprehensive Modeling of Vehicle Air Conditioning Loads Using Heat Balance Method
,” SAE Technical Paper No. 2013-01-1507.
9.
Energy Information Administration (EIA)
,
2021
, “
Monthly Energy Review
,” May 2021, https://www.eia.gov/totalenergy/data/monthly/archive/00352105.pdf
10.
Koban
,
M.
,
2009
,
HFO-1234yf Low GWP Refrigerant LCCP Analysis
,
SAE International
,
Detroit, MI
.
11.
Heath
,
E. A.
,
2017
, “
Amendment to the Montreal Protocol on Substances That Deplete the Ozone Layer (Kigali Amendment)
,”
Int. Legal Mater.
,
1
(
1
), pp.
193
205
.
12.
Environmental Protection Agency (EPA)
,
2015
, “
Protection of Stratospheric Ozone: Change of Listing Status for Certain Substitutes Under the Significant New Alternatives Policy Program; Final Rule
,” Federal Register, Rules and Regulations, 80, pp.
42870
42959
.
13.
Gehm
,
R.
,
2022
, “
Commercial Vehicles Begin Shift to R-1234yf Refrigerant
,” SAE Technical Papers, March 4, 2022, https://www.sae.org/news/2022/03/commercial-vehicles-shift-to-r-1234yf-refrigerant
14.
Hula
,
A.
,
Maguire
,
A.
,
Bunker
,
A.
,
Rojeck
,
T.
, and
Harrison
,
S.
,
2022
, “
The 2022 EPA Automotive Trends Report: Greenhouse Gas Emissions, Fuel Economy, and Technology Since 1975
,” EPA Technical Paper No. EPA-420-R-22-029.
15.
Calm
,
J. M.
,
2008
, “
The Next Generation of Refrigerants—Historical Review, Considerations, and Outlook
,”
Int. J. Refrig.
,
31
(
7
), pp.
1123
1133
.
16.
Sarbu
,
I.
,
2014
, “
A Review on Substitution Strategy of Non-Ecological Refrigerants From Vapour Compression-Based Refrigeration, Air-Conditioning and Heat Pump Systems
,”
Int. J. Refrig.
,
46
, pp.
123
141
.
17.
Tashtoush
,
B. M.
,
Moh'd A
,
A. N.
, and
Khasawneh
,
M. A.
,
2019
, “
A Comprehensive Review of Ejector Design, Performance, and Applications
,”
Appl. Energy
,
240
, pp.
138
172
.
18.
Besagni
,
G.
,
Mereu
,
R.
, and
Inzoli
,
F.
,
2016
, “
Ejector Refrigeration: A Comprehensive Review
,”
Renew. Sustain. Energy Rev.
,
53
, pp.
373
407
.
19.
Sokolov
,
M.
, and
Hershgal
,
D.
,
1990
, “
Enhanced Ejector Refrigeration Cycles Powered by Low Grade Heat. Part 1. Systems Characterization
,”
Int. J. Refrig.
,
13
(
6
), pp.
351
356
.
20.
Sumeru
,
K.
,
Nasution
,
H.
, and
Ani
,
F. N.
,
2012
, “
A Review on Two-Phase Ejector as an Expansion Device in Vapor Compression Refrigeration Cycle
,”
Renew. Sustain. Energy Rev.
,
16
(
7
), pp.
4927
4937
.
21.
Cengel
,
Y. A.
,
Boles
,
M. A.
, and
Kanoğlu
,
M.
,
2011
,
Thermodynamics: An Engineering Approach
,
McGraw-Hill
,
New York
.
22.
Dorantes
,
R.
,
Estrada
,
C. A.
, and
Pilatowsky
,
I.
,
1996
, “
Mathematical Simulation of a Solar Ejector-Compression Refrigeration System
,”
Appl. Therm. Eng.
,
16
(
8–9
), pp.
669
675
.
23.
Worall
,
M.
,
Omer
,
S.
, and
Riffat
,
S. B.
,
2011
, “
A Hybrid Jet-Pump CO2 Compression System for Transport Refrigeration
,”
Int. J. Low-Carbon Technol.
,
6
(
4
), pp.
249
254
.
24.
Mansour
,
R. B.
,
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2014
, “
Numerical Evaluation of Ejector-Assisted Mechanical Compression Systems for Refrigeration Applications
,”
Int. J. Refrig.
,
43
, pp.
36
49
.
25.
Šarevski
,
M. N.
, and
Šarevski
,
V. N.
,
2014
, “
Preliminary Study of a Novel R718 Refrigeration Cycle With Single Stage Centrifugal Compressor and Two-Phase Ejector
,”
Int. J. Refrig.
,
40
, pp.
435
449
.
26.
Wang
,
L.
,
Cai
,
W.
,
Zhao
,
H.
,
Lin
,
C.
, and
Yan
,
J.
,
2016
, “
Experimentation and Cycle Performance Prediction of Hybrid A/C System Using Automobile Exhaust Waste Heat
,”
Appl. Therm. Eng.
,
94
, pp.
314
323
.
27.
Liu
,
J.
,
Wang
,
L.
,
Jia
,
L.
,
Li
,
Z.
, and
Zhao
,
H.
,
2017
, “
A Control Oriental Model for Combined Compression-Ejector Refrigeration System
,”
Energy Convers. Manage.
,
138
, pp.
538
546
.
28.
Xu
,
Y.
,
Wang
,
C.
,
Jiang
,
N.
,
Song
,
M.
,
Wang
,
Q.
, and
Chen
,
G.
,
2019
, “
A Solar-Heat-Driven Ejector-Assisted Combined Compression Cooling System for Multistory Buildin—–Application Potential and Effects of Floor Numbers
,”
Energy Convers. Manage.
,
195
, pp.
86
98
.
29.
Kumar
,
K.
,
Gupta
,
H. K.
, and
Kumar
,
P.
,
2020
, “
Analysis of a Hybrid Transcritical CO2 Vapor Compression and Vapor Ejector Refrigeration System
,”
Appl. Therm. Eng.
,
181
, p.
115945
.
30.
Pridasawas
,
W.
, and
Lundqvist
,
P.
,
2004
, “
An Exergy Analysis of a Solar-Driven Ejector Refrigeration System
,”
Sol. Energy
,
76
(
4
), pp.
369
379
.
31.
Alexis
,
G. K.
,
2005
, “
Exergy Analysis of Ejector-Refrigeration Cycle Using Water as Working Fluid
,”
Int. J. Energy Res.
,
29
(
2
), pp.
95
105
.
32.
Yari
,
M.
,
2008
, “
Exergetic Analysis of the Vapour Compression Refrigeration Cycle Using Ejector as an Expander
,”
Int. J. Exergy
,
5
(
3
), pp.
326
340
.
33.
Deng
,
J. Q.
,
Jiang
,
P. X.
,
Lu
,
T.
, and
Lu
,
W.
,
2007
, “
Particular Characteristics of Transcritical CO2 Refrigeration Cycle With an Ejector
,”
Appl. Therm. Eng.
,
27
(
2–3
), pp.
381
388
.
34.
Dahmani
,
A.
,
Aidoun
,
Z.
, and
Galanis
,
N.
,
2011
, “
Optimum Design of Ejector Refrigeration Systems With Environmentally Benign Fluids
,”
Int. J. Therm. Sci.
,
50
(
8
), pp.
1562
1572
.
35.
López Paniagua
,
I.
,
Rodríguez Martín
,
J.
,
González Fernandez
,
C.
,
Jiménez Alvaro
,
Á.
, and
Nieto Carlier
,
R.
,
2013
, “
A New Simple Method for Estimating Exergy Destruction in Heat Exchangers
,”
Entropy
,
15
(
2
), pp.
474
489
.
36.
Chen
,
J.
,
Havtun
,
H.
, and
Palm
,
B.
,
2015
, “
Conventional and Advanced Exergy Analysis of an Ejector Refrigeration System
,”
Appl. Energy
,
144
, pp.
139
151
.
37.
Yan
,
J.
,
Cai
,
W.
, and
Li
,
Y.
,
2012
, “
Geometry Parameters Effect for Air-Cooled Ejector Cooling Systems With R134a Refrigerant
,”
Renew. Energy
,
46
, pp.
155
163
.
38.
Wang
,
H.
,
Cai
,
W.
,
Wang
,
Y.
,
Yan
,
J.
, and
Wang
,
L.
,
2016
, “
Experimental Study of the Behavior of a Hybrid Ejector-Based Air-Conditioning System With R134a
,”
Energy Convers. Manage.
,
112
, pp.
31
40
.
39.
Almutairi
,
A.
,
Pilidis
,
P.
, and
Al-Mutawa
,
N.
,
2015
, “
Energetic and Exergetic Analysis of Combined Cycle Power Plant: Part-1 Operation and Performance
,”
Energies
,
8
(
12
), pp.
14118
14135
.
40.
Jin
,
Z.
,
Dong
,
Q.
, and
Liu
,
M.
,
2010
, “
Exergy Study of Fouling Factors in Heat Exchanger Networks
,”
ASME J. Heat Transfer
,
132
(
1
), p.
011802
.
41.
Dincer
,
I.
, and
Rosen
,
M. A.
,
2015
,
Exergy Analysis of Heating, Refrigerating and Air Conditioning: Methods and Applications
,
Academic Press
.
42.
Moghaddam
,
H. A.
,
Shafaee
,
M.
, and
Riazi
,
R.
,
2019
, “
Numerical Investigation of a Refrigeration Ejector: Effects of Environment-Friendly Refrigerants and Geometry of the Ejector Mixing Chamber
,”
Eur. J. Sustain. Develop. Res.
,
3
(
3
), p.
em0090
.
You do not currently have access to this content.