Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The use of the supercritical carbon dioxide Brayton cycle (SCBC) for waste heat recovery from the gas turbine cycle (GTC) can enhance system performance and reduce CO2 emissions. To analyze the possibility of component optimization and the characteristics of the exergy destruction, a model of a gas turbine-supercritical carbon dioxide (GT-sCO2) combined system with a triple cascade layout has been established, and the exergy destruction of the GT-sCO2 combined system has been analyzed for the first time using an advanced exergy analysis based on a conventional exergy analysis, which further classified the exergy destruction into endogenous, exogenous, avoidable, and unavoidable, and pointed out the direction for the optimization of the new system. The results reveal that the GTC subsystem has larger destruction than the SCBC subsystem. The endogenous exergy destruction ratio of the GT-sCO2 combined cycle is 88.86%, while the endogenous avoidable part is 20.94%. The combustion chamber has the largest endogenous avoidable exergy destruction in the GTC subsystem (51.42 MW), while the sCO2 compressor has the largest endogenous avoidable exergy destruction in the SCBC subsystem (1.89 MW). Depending on the endogenous avoidable exergy destruction, the order of optimization of components is: combustion chamber, gas turbine, air compressor, sCO2 compressor, high-temperature sCO2 turbine, cooler, high-temperature recuperator, low-temperature sCO2 turbine, and low-temperature recuperator, and the corresponding component improvement suggestions are made to aid in subsequent optimization efforts.

References

1.
Carlson
,
M.
, and
Alvarez
,
F.
,
2021
, “
Design of a 1 MWth Supercritical Carbon Dioxide Primary Heat Exchanger Test System
,”
ASME J. Energy Resour. Technol.
,
143
(
9
), p.
090904
.
2.
Xu
,
J.
,
Liu
,
C.
,
Sun
,
E.
,
Xie
,
J.
,
Li
,
M.
,
Yang
,
Y.
, and
Liu
,
J.
,
2019
, “
Perspective of S-CO2 Power Cycles
,”
Energy
,
186
, p.
115831
.
3.
Guo
,
J.-Q.
,
Li
,
M.-J.
,
He
,
Y.-L.
,
Jiang
,
T.
,
Ma
,
T.
,
Xu
,
J.-L.
, and
Cao
,
F.
,
2022
, “
A Systematic Review of Supercritical Carbon Dioxide(S-CO2) Power Cycle for Energy Industries: Technologies, Key Issues, and Potential Prospects
,”
Energy Convers. Manage.
,
258
, p.
115437
.
4.
Crespi
,
F.
,
Gavagnin
,
G.
,
Sánchez
,
D.
, and
Martínez
,
G. S.
,
2017
, “
Supercritical Carbon Dioxide Cycles for Power Generation: A Review
,”
Appl. Energy
,
195
, pp.
152
183
.
5.
You
,
D.
, and
Metghalchi
,
H.
,
2021
, “
On the Supercritical Carbon Dioxide Recompression Cycle
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
121701
.
6.
Hossain
,
M. J.
,
Chowdhury
,
J. I.
,
Balta-Ozkan
,
N.
,
Asfand
,
F.
,
Saadon
,
S.
, and
Imran
,
M.
,
2021
, “
Design Optimization of Supercritical Carbon Dioxide (s-CO2) Cycles for Waste Heat Recovery From Marine Engines
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120901
.
7.
Wang
,
D.
,
Chen
,
H.
,
Wang
,
T.
,
Chen
,
Y.
, and
Wei
,
J.
,
2022
, “
Study on Configuration of Gas-Supercritical Carbon Dioxide Combined Cycle Under Different Gas Turbine Power
,”
Energy Rep.
,
8
, pp.
5965
5973
.
8.
Hosseinpour
,
J.
,
Howard
,
J.
,
Chen
,
J.
, and
Engeda
,
A.
,
2022
, “
Challenges for Developing and Marketing a Brayton-Cycle-Based Power Genset Gas Turbine Using Supercritical CO2 and a Compressor Design for Simple Recuperated Cycle
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032101
.
9.
Li
,
B.
, and
Wang
,
S.
,
2022
, “
Thermodynamic Analysis and Optimization of a Hybrid Cascade Supercritical Carbon Dioxide Cycle for Waste Heat Recovery
,”
Energy
,
259
, p.
125108
.
10.
Cao
,
Y.
,
Zhan
,
J.
,
Dong
,
Y.
, and
Si
,
F.
,
2023
, “
Off-Design Performance Analysis of a Gas-Supercritical Carbon Dioxide Combined Cycle Under Multi-stage Mass Flow Cooperative Operation
,”
Appl. Therm. Eng.
,
219
, p.
119486
.
11.
Brahimi
,
F.
,
Madani
,
B.
, and
Ghemmadi
,
M.
,
2022
, “
Comparative Thermodynamic Environmental and Economic Analyses of Combined Cycles Using Air and Supercritical CO2 in the Bottoming Cycles for Power Generation by Gas Turbine Waste Heat Recovery
,”
Energies
,
15
(
23
), p.
9066
.
12.
Wang
,
D.
,
Ren
,
X.
,
Zhang
,
J.
,
Wang
,
Z.
, and
Wang
,
T.
,
2023
, “
Comparative Investigation on Techno-Economics of Cascade Supercritical CO2 Combined Cycles for Waste Heat Recovery of Typical Gas Turbines
,”
Therm. Sci. Eng. Prog.
,
42
, p.
101941
.
13.
Zhang
,
Q.
,
Ogren
,
R. M.
, and
Kong
,
S.-C.
,
2018
, “
Thermo-Economic Analysis and Multi-objective Optimization of a Novel Waste Heat Recovery System With a Transcritical CO2 Cycle for Offshore Gas Turbine Application
,”
Energy Convers. Manage.
,
172
, pp.
212
227
.
14.
Pan
,
P.
,
Yuan
,
C.
,
Sun
,
Y.
,
Yan
,
X.
,
Lu
,
M.
, and
Bucknall
,
R.
,
2020
, “
Thermo-Economic Analysis and Multi-objective Optimization of S-CO2 Brayton Cycle Waste Heat Recovery System for an Ocean-Going 9000 TEU Container Ship
,”
Energy Convers. Manage.
,
221
, p.
113077
.
15.
Thanganadar
,
D.
,
Asfand
,
F.
, and
Patchigolla
,
K.
,
2019
, “
Thermal Performance and Economic Analysis of Supercritical Carbon Dioxide Cycles in Combined Cycle Power Plant
,”
Appl. Energy
,
255
, p.
113836
.
16.
Li
,
B.
,
Wang
,
S. S.
,
Wang
,
K.
, and
Song
,
L.
,
2021
, “
Comparative Investigation on the Supercritical Carbon Dioxide Power Cycle for Waste Heat Recovery of Gas Turbine
,”
Energy Convers. Manage.
,
228
, p.
113670
.
17.
Zhang
,
F.
,
Zhou
,
J.
,
Liao
,
G.
,
E
,
J.
,
You
,
M.
, and
Yang
,
C.
,
2023
, “
Improvement Design and Performance Assessment of Combined Cooling and Power System Using CO2 for Waste Heat Recovery
,”
Appl. Therm. Eng.
,
228
, p.
120419
.
18.
Cao
,
Y.
,
Zhan
,
J.
,
Cao
,
Q.
, and
Si
,
F.
,
2022
, “
Techno-Economic Analysis of Cascaded Supercritical Carbon Dioxide Combined Cycles for Exhaust Heat Recovery of Typical Gas Turbines
,”
Energy Convers. Manage.
,
258
, p.
115536
.
19.
Sun
,
L.
,
Wang
,
D.
, and
Xie
,
Y.
,
2021
, “
Thermodynamic and Exergoeconomic Analysis of Combined Supercritical CO2 Cycle and Organic Rankine Cycle Using CO2-Based Binary Mixtures for Gas Turbine Waste Heat Recovery
,”
Energy Convers. Manage.
,
243
, p.
114400
.
20.
Boyano
,
A.
,
Morosuk
,
T.
,
Blanco-Marigorta
,
A. M.
, and
Tsatsaronis
,
G.
,
2012
, “
Conventional and Advanced Exergoenvironmental Analysis of a Steam Methane Reforming Reactor for Hydrogen Production
,”
J. Cleaner Prod.
,
20
(
1
), pp.
152
160
.
21.
Kelly
,
S.
,
2008
, “Energy Systems Improvement Based on Endogenous and Exogenous Exergy Destruction.”
22.
Kelly
,
S.
,
Tsatsaronis
,
G.
, and
Morosuk
,
T.
,
2009
, “
Advanced Exergetic Analysis: Approaches for Splitting the Exergy Destruction Into Endogenous and Exogenous Parts
,”
Energy
,
34
(
3
), pp.
384
391
.
23.
Cai
,
L.
,
Fu
,
Y.
,
Cheng
,
Z.
,
Xiang
,
Y.
, and
Guan
,
Y.
,
2022
, “
Advanced Exergy and Exergoeconomic Analyses to Evaluate the Economy of LNG Oxy-Fuel Combined Cycle Power Plant
,”
J. Environ. Chem. Eng.
,
10
(
5
), p.
108387
.
24.
Açıkkalp
,
E.
,
Aras
,
H.
, and
Hepbasli
,
A.
,
2014
, “
Advanced Exergy Analysis of a Trigeneration System With a Diesel–Gas Engine Operating in a Refrigerator Plant Building
,”
Energy Build.
,
80
, pp.
268
275
.
25.
Modi
,
N.
,
Pandya
,
B.
,
Patel
,
J.
, and
Mudgal
,
A.
,
2019
, “
Advanced Exergetic Assessment of a Vapor Compression Cycle With Alternative Refrigerants
,”
ASME J. Energy Resour. Technol.
,
141
(
9
), p.
092002
.
26.
Montazerinejad
,
H.
,
Fakhimi
,
E.
,
Ghandehariun
,
S.
, and
Ahmadi
,
P.
,
2022
, “
Advanced Exergy Analysis of a PEM Fuel Cell With Hydrogen Energy Storage Integrated With Organic Rankine Cycle for Electricity Generation
,”
Sustain. Energy Technol. Assess.
,
51
, p.
101885
.
27.
Mossi Idrissa
,
A. K.
, and
Goni Boulama
,
K.
,
2019
, “
Advanced Exergy Analysis of a Combined Brayton/Brayton Power Cycle
,”
Energy
,
166
, pp.
724
737
.
28.
Song
,
M.
,
Zhuang
,
Y.
,
Zhang
,
L.
,
Wang
,
C.
,
Du
,
J.
, and
Shen
,
S.
,
2021
, “
Advanced Exergy Analysis for the Solid Oxide Fuel Cell System Combined With a Kinetic-Based Modeling Pre-Reformer
,”
Energy Convers. Manage.
,
245
, p.
114560
.
29.
Zheng
,
L.
,
Hu
,
Y.
,
Mi
,
C.
, and
Deng
,
J.
,
2022
, “
Advanced Exergy Analysis of a CO2 Two-Phase Ejector
,”
Appl. Therm. Eng.
,
209
, p.
118247
.
30.
Ozcan
,
H. G.
,
Hepbasli
,
A.
,
Abusoglu
,
A.
, and
Anvari-Moghaddam
,
A.
,
2021
, “
Advanced Exergy Analysis of Waste-Based District Heating Options Through Case Studies
,”
Energies
,
14
(
16
), p.
4766
.
31.
Petrakopoulou
,
F.
,
Tsatsaronis
,
G.
,
Morosuk
,
T.
, and
Carassai
,
A.
,
2012
, “
Conventional and Advanced Exergetic Analyses Applied to a Combined Cycle Power Plant
,”
Energy
,
41
(
1
), pp.
146
152
.
32.
Fallah
,
M.
,
Siyahi
,
H.
,
Ghiasi
,
R. A.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Rosen
,
M. A.
,
2016
, “
Comparison of Different Gas Turbine Cycles and Advanced Exergy Analysis of the Most Effective
,”
Energy
,
116
, pp.
701
715
.
33.
Fallah
,
M.
,
Mahmoudi
,
S. M. S.
,
Yari
,
M.
, and
Akbarpour Ghiasi
,
R.
,
2016
, “
Advanced Exergy Analysis of the Kalina Cycle Applied for Low Temperature Enhanced Geothermal System
,”
Energy Convers. Manage.
,
108
, pp.
190
201
.
34.
Mohammadi
,
Z.
,
Fallah
,
M.
, and
Mahmoudi
,
S. M. S.
,
2019
, “
Advanced Exergy Analysis of Recompression Supercritical CO2 Cycle
,”
Energy
,
178
, pp.
631
643
.
35.
Fallah
,
M.
,
Mohammadi
,
Z.
, and
Mahmoudi
,
S. M. S.
,
2022
, “
Advanced Exergy Analysis of the Combined S-CO2/ORC System
,”
Energy
,
241
, p.
122870
.
36.
Cho
,
S. K.
,
Kim
,
M.
,
Baik
,
S.
,
Ahn
,
Y.
, and
Lee
,
J. I.
,
2015
, “
Investigation of the Bottoming Cycle for High Efficiency Combined Cycle Gas Turbine System With Supercritical Carbon Dioxide Power Cycle
,”
Turbo Expo: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, Vol.
56802
, p.
V009T36A011
.
37.
Musgrove
,
G.
,
LePierres
,
R.
, and
Nash
,
J.
,
2014
, “
Heat Exchangers for Supercritical CO2 Power Cycle Applications
,” The 4th International Symposium on Supercritical CO2 Power Cycles,
Pittsburgh, PA
,
Sept. 9–10
.
38.
You
,
H.
,
Han
,
J.
,
Liu
,
Y.
,
Chen
,
C.
, and
Ge
,
Y.
,
2020
, “
4E Analysis and Multi-objective Optimization of a Micro Poly-Generation System Based on SOFC/MGT/MED and Organic Steam Ejector Refrigerator
,”
Energy
,
206
, p.
118122
.
39.
Voloshchuk
,
V.
,
Gullo
,
P.
, and
Nikiforovich
,
E.
,
2023
, “
Advanced Exergy Analysis of Ultra-Low GWP Reversible Heat Pumps for Residential Applications
,”
Energies
,
16
(
2
), p.
703
.
40.
Yang
,
Q.
,
Zhang
,
Z.
,
Fan
,
Y.
,
Chu
,
G.
,
Zhang
,
D.
, and
Yu
,
J.
,
2022
, “
Advanced Exergy Analysis and Optimization of a CO2 to Methanol Process Based on Rigorous Modeling and Simulation
,”
Fuel
,
325
, p.
124944
.
41.
Xu
,
J.
,
Wang
,
X.
,
Sun
,
E.
, and
Li
,
M.
,
2021
, “
Economic Comparison Between sCO2 Power Cycle and Water-Steam Rankine Cycle for Coal-Fired Power Generation System
,”
Energy Convers. Manage.
,
238
, p.
114150
.
42.
Weiland
,
N. T.
,
Lance
,
B. W.
, and
Pidaparti
,
S. R.
,
2019
, “
SCO2 Power Cycle Component Cost Correlations From DOE Data Spanning Multiple Scales and Applications
,”
Turbo Expo: Power for Land, Sea, and Air
,
American Society of Mechanical Engineers
, Vol.
58721
, p.
V009T38A008
.
43.
Mignard
,
D.
,
2014
, “
Correlating the Chemical Engineering Plant Cost Index With Macro-Economic Indicators
,”
Chem. Eng. Res. Des.
,
92
(
2
), pp.
285
294
.
44.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Scammell
,
W. O.
,
2016
, “
Thermo-Economic Analysis of Four sCO2 Waste Heat Recovery Power Systems
,”
Fifth International SCO2 Symposium
,
San Antonio, TX
,
Mar. 29–31
, pp.
28
31
.
45.
Sun
,
L.
,
Wang
,
D.
, and
Xie
,
Y.
,
2021
, “
Energy, Exergy and Exergoeconomic Analysis of Two Supercritical CO2 Cycles for Waste Heat Recovery of Gas Turbine
,”
Appl. Therm. Eng.
,
196
, p.
117337
.
You do not currently have access to this content.