Graphical Abstract Figure

Schematic diagram of the rectangle micro-channel cooling heat sink: (a) global model and (b) holistic model

Graphical Abstract Figure

Schematic diagram of the rectangle micro-channel cooling heat sink: (a) global model and (b) holistic model

Close modal

Abstract

With the development of microelectronics and micro-electromechanical systems, the performance requirements for microchannels are becoming increasingly higher and more complex. This study aims to improve the overall performance of rectangular microchannels using the multi-objective particle swarm optimization algorithm (MOPSOA). First, the response surface methodology (RSM) was adopted to fit the thermal resistance function. Three-dimensional contour plots and response surface plots were created to analyze the interaction between fin thickness, channel width, and channel depth, aiming to understand their impact on thermal resistance values. Second, a mathematical model for the MOPSOA was developed with the objective functions being thermal resistance and pressure drop. Next, the Pareto optimal solution set for thermal resistance and pressure drop was determined by conducting simulations, and the K-mean clustering method was employed to identifying the four representative solutions. The results indicate a high level of accuracy in the thermal resistance function fitted by the RSM, with correlation coefficients R2 = 0.9981 and adjusted correlation coefficient adj R2 = 0.9961 respectively. Finally, the performance of a microchannel heat sink was assessed using the computational fluid dynamics method, and the optimized heating surface has a maximum temperature of 11 °C and a maximum pressure drop of 5.292 kPa lower than the non-optimized one. Additionally, the temperature distribution on the substrate is more uniform. This revealed a superior heat transfer capability and lower pressure drop, resulting in a more comprehensive and efficient performance.

References

1.
Zengyuan
,
G.
,
1988
, “
Focus of Current World Heat Transfer Field-Cooling of Microelectronics Devices
,”
Chin. Sci. Fund
,
2
, pp.
20
25
.
2.
Chein
,
R.
, and
Chuang
,
J.
,
2007
, “
Experimental Microchannel Heat Sink Performance Studies Using Nanofluids
,”
Int. J. Therm. Sci.
,
46
(
1
), pp.
57
66
.
3.
Zhang
,
L. Y.
,
Zhang
,
Y. F.
,
Chen
,
J. Q.
, and
Bai
,
S. L.
,
2015
, “
Fluid Flow and Heat Transfer Characteristics of Liquid Cooling Microchannels in LTCC Multilayered Packaging Substrate
,”
Int. J. Heat Mass Transfer
,
84
, pp.
339
345
.
4.
Feng
,
Z.
, and
Li
,
P.
,
2012
, “
Fast Thermal Analysis on GPU for 3D-ICs With Integrated Microchannel Cooling
,”
Proceedings of 2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)
,
San Jose, CA
,
Nov. 7–11
, pp.
551
555
.
5.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.
6.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
64
74
.
7.
Loni
,
R.
,
Askari Asli-ardeh
,
E.
,
Ghobadian
,
B.
,
Kasaeian
,
A. B.
, and
Gorjian
,
S.
,
2017
, “
Thermodynamic Analysis of a Solar Dish Receiver Using Different Nanofluids
,”
Energy
,
133
(
C
), pp.
749
760
.
8.
Loni
,
R.
,
Askari Asli-Ardeh
,
E.
,
Ghobadian
,
B.
,
Kasaeian
,
A.
, and
Gorjian
,
S.
,
2017
, “
Numerical and Experimental Investigation of Wind Effect on a Hemispherical Cavity Receiver
,”
Appl. Therm. Eng.
,
126
, pp.
179
193
.
9.
Pavlovic
,
S.
,
Bellos
,
E.
, and
Loni
,
R.
,
2018
, “
Exergetic Investigation of a Solar Dish Collector With Smooth and Corrugated Spiral Absorber Operating With Various Nanofluids
,”
J. Clean. Prod.
,
174
, pp.
1147
1160
.
10.
Indulakshmi
,
B.
,
Prasad
,
N.
, and
Kumar
,
R. S.
,
2023
, “
Performance Analysis of a Phase Changing Material Based Thermocycler for Nucleic Acid Amplification
,”
ASME J. Therm. Sci. Eng. Appl.
,
15
(
5
), p.
050901
.
11.
Siva
,
V. M.
,
Pattamatta
,
A.
, and
Kumar Das
,
S.
,
2013
, “
A Numerical Study of Flow and Temperature Maldistribution in a Parallel Microchannel System for Heat Removal in Microelectronic Devices
,”
ASME J. Therm. Sci. Eng. Appl.
,
5
(
4
), p.
041008
.
12.
Samal
,
S. K.
, and
Moharana
,
M. K.
,
2020
, “
Effects of Inlet/Outlet Manifold Configuration on the Thermo-Hydrodynamic Performance of Recharging Microchannel Heat Sink
,”
ASME J. Thermal Sci. Eng. Appl.
,
13
(
3
), p.
031003
.
13.
Tingzhen
,
M.
,
Cunjin
,
C.
,
Wei
,
Y.
,
Wenqing
,
S.
,
Wei
,
F.
, and
Nan
,
Z.
,
2018
, “
Optimization of Dimples in Microchannel Heat Sink With Impinging Jets—Part B: The Influences of Dimple Height and Arrangement
,”
J. Therm. Sci.
,
27
(
1
), pp.
1
10
.
14.
Wang
,
H.
,
Chen
,
Z.
, and
Gao
,
J.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.: Des. Process. Equip. Econ.
,
107
, pp.
870
879
.
15.
Ijam
,
A. H.
,
Saidur
,
R.
, and
Ganesan
,
P. B.
,
2012
, “
Cooling of Minichannel Heat Sink Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1188
1194
.
16.
Kim
,
S. J.
,
2004
, “
Methods for Thermal Optimization of Microchannel Heat Sinks
,”
Heat Transfer Eng.
,
25
(
1
), pp.
37
49
.
17.
Zhang
,
Y.
,
Liu
,
Y.
,
Qu
,
M.
,
Yao
,
Q.
,
Fu
,
C.
, and
Yin
,
S.
,
2024
, “
Optimization Analysis of Heat Dissipation Performance of Microchannel Heat Sinks With the Addition of Columnar Inserts of Spiral Distribution
,”
Int. J. Therm. Sci.
,
195
, pp.
108633
108633
.
18.
Wei
,
H.
, and
Yu
,
R.
,
2024
, “
Multi-objective Optimization Design of a Cobweb-Like Channel Heat Sink Using Particle Swarm Algorithm
,”
ASME J. Therm. Sci. Eng. Appl.
,
16
(
3
), p.
034501
.
19.
Yildizeli
,
A.
, and
Cadirci
,
S.
,
2020
, “
Multi-objective Optimization of a Micro-Channel Heat Sink Through Genetic Algorithm
,”
Int. J. Heat Mass Transfer
,
146
(
1
), pp.
118847.1
118847.13
.
20.
Liu
,
H. L.
,
Shi
,
H. B.
,
Shen
,
H.
, and
Xie
,
G.
,
2019
, “
The Performance Management of a Li-Ion Battery by Using Tree-Like Mini-Channel Heat Sinks: Experimental and Numerical Optimization
,”
Energy
,
189
(
1
), pp.
116150.1
116150.15
.
21.
Ge
,
Y.
,
Wang
,
S. C.
,
Liu
,
Z. C.
, and
Liu
,
W.
,
2019
, “
Optimal Shape Design of a Minichannel Heat Sink Applying Multi-objective Optimization Algorithm and Three-Dimensional Numerical Method
,”
Appl. Therm. Eng.
,
148
, pp.
120
128
.
22.
Hu
,
G.
, and
Xu
,
S.
,
2009
, “
Optimization Design of Microchannel Heat Sink Based on SQP Method and Numerical Simulation
,”
International Conference on Applied Superconductivity Electromagnetic Devices
,
Chengdu, China
,
Sept. 25–27
, pp.
89
92
.
23.
Shao
,
B. D.
,
Wang
,
L. F.
,
Cheng
,
H. M.
, and
Li
,
J.
,
2012
, “
Optimization and Numerical Simulation of Multi-layer Microchannel Heat Sink
,”
Proc. Eng.
,
31
, pp.
928
933
.
24.
Baodong
,
S.
,
Lifeng
,
W.
,
Jianyun
,
L.
, and
Heming
,
C.
,
2011
, “
Multi-objective Optimization Design of a Micro-Channel Heat Sink Using Adaptive Genetic Algorithm
,”
Int. J. Numer. Methods Heat Fluid Flow
,
21
(
3
), pp.
353
364
.
25.
Luo
,
L.
,
Du
,
W.
,
Wang
,
S.
,
Wu
,
W.
, and
Zhang
,
X.
,
2019
, “
Multi-objective Optimization of the Dimple/Protrusion Channel With Pin Fins for Heat Transfer Enhancement
,”
Int. J. Numer. Methods Heat Fluid Flow
,
29
(
2
), pp.
790
813
.
26.
Rao
,
R. V.
,
More
,
K. C.
,
Taler
,
J.
, and
Ocłoń
,
P.
,
2016
, “
Dimensional Optimization of a Micro-Channel Heat Sink Using Jaya Algorithm
,”
Appl. Therm. Eng.
,
103
, pp.
572
582
.
27.
Dong
,
X.
, and
Liu
,
X.
,
2021
, “
Multi-objective Optimization of Heat Transfer in Microchannel for Non-Newtonian Fluid
,”
Chem. Eng. J.
,
412
, p.
128594
.
28.
Yang
,
Y. T.
,
Tang
,
H. W.
, and
Ding
,
W. P.
,
2016
, “
Optimization Design of Micro-Channel Heat Sink Using Nanofluid by Numerical Simulation Coupled With Genetic Algorithm
,”
Int. Commun. Heat Mass Transfer
,
72
, pp.
29
38
.
29.
Zhai
,
Y.
,
Li
,
Z.
,
Shen
,
X.
, and
Wang
,
H.
,
2021
, “
Thermal Performance Analysis of Multi-objective Optimized Microchannels With Triangular Cavity and Rib Based on Field Synergy Principle
,”
Case Stud. Therm. Eng.
,
25
, p.
100963
.
30.
Amanifard
,
N.
,
Nariman-Zadeh
,
N.
,
Borji
,
M.
,
Khalkhali
,
A.
, and
Habibdoust
,
A.
,
2008
, “
Modelling and Pareto Optimization of Heat Transfer and Flow Coefficients in Microchannels Using GMDH Type Neural Networks and Genetic Algorithms
,”
Energy Convers. Manage.
,
49
(
2
), pp.
311
325
.
31.
Foli
,
K.
,
Okabe
,
T.
,
Olhofer
,
M.
,
Jin
,
Y. C.
, and
Sendhoff
,
B.
,
2006
, “
Optimization of Micro Heat Exchanger: CFD, Analytical Approach and Multi-objective Evolutionary Algorithms
,”
Int. J. Heat Mass Transfer
,
49
(
5–6
), pp.
1090
1099
.
32.
Shen
,
H.
,
Jin
,
X.
,
Zhang
,
F. L.
,
Xie
,
G. N.
,
Sunden
,
B.
, and
Yan
,
H. B.
,
2017
, “
Computational Optimization of Counter-Flow Double-Layered Microchannel Heat Sinks Subjected to Thermal Resistance and Pumping Power
,”
Appl. Therm. Eng.
,
121
, pp.
180
189
.
33.
Naseer
,
M. N.
,
Zaidi
,
A. A.
,
Khan
,
H.
,
Kumar
,
S.
,
Owais
,
M. T.b.
,
Wahab
,
Y. A.
,
Dutta
,
K.
, et al
,
2021
, “
Statistical Modeling and Performance Optimization of a Two-Chamber Microbial Fuel Cell by Response Surface Methodology
,”
Catalysts
,
11
(
10
), p.
1202
.
34.
Pendse
,
D. M.
, and
Joshi
,
S. S.
,
2004
, “
Modeling and Optimization of Machining Process in Discontinuously Reinforced Aluminium Matrix Composites
,”
Mach. Sci. Technol.
,
8
(
1
), pp.
85
102
.
35.
Guo
,
Z.-Y.
,
2000
, “
Characteristics of Microscale Fluid Flow and Heat Transfer I MEMS
,”
Proceedings of the International Conference on Heat Transfer and Transport Phenomena in Microscale
,
Jan. 1
, pp.
24
31
.
36.
Tang
,
K.
,
Lin
,
G. P.
,
Guo
,
Y. D.
,
Huang
,
J. Y.
,
Zhang
,
H. X.
, and
Miao
,
J. Y.
,
2023
, “
Simulation and Optimization of Thermal Performance in Diverging/Converging Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
200
, p.
123495
.
37.
Manlapaz
,
R. L.
, and
Churchill
,
S. W.
,
1981
, “
Fully Developed Laminar Convection From a Helical Coil
,”
Chem. Eng. Commun.
,
9
(
1–6
), pp.
185
200
.
38.
Wang
,
Y.
,
Zhang
,
C.
, and
Chen
,
Z.
,
2015
, “
A Method for State-of-Charge Estimation of LiFePO4 Batteries at Dynamic Currents and Temperatures Using Particle Filter
,”
J. Power Sources
,
279
, pp.
306
311
.
39.
Aboud
,
A.
,
Rokbani
,
N.
,
Fdhila
,
R.
,
Qahtani
,
A. M.
,
Almutiry
,
O.
,
Dhahri
,
H.
,
Hussain
,
A.
, and
Alimi
,
A. M.
,
2022
, “
DPB-MOPSO: A Dynamic Pareto Bi-Level Multi-objective Particle Swarm Optimization Algorithm
,”
Appl. Soft Comput.
,
129
, p.
109622
.
40.
Li
,
G.
,
Wang
,
W.
,
Zhang
,
W.
,
Wang
,
Z.
,
Tu
,
H.
, and
You
,
W.
,
2021
, “
Grid Search Based Multi-population Particle Swarm Optimization Algorithm for Multimodal Multi-objective Optimization
,”
Swarm Evol. Comput.
,
62
, p.
100843-1
100843-18
.
You do not currently have access to this content.