An improved FEM model was developed to simulate the elastic behavior of a connecting rod bearing, accounting for the displacements caused by the tightening torque applied to the bolts that join the cap and the rod. These initial displacements are added to the pressure induced displacements, to enhance the solution of the elastohydrodynamic bearing lubrication problem. The big end bearing of a marine diesel engine was modeled and analyzed under combustion process loads and inertia loads using the Newton-Raphson method together with the Murty’s algorithm. Some important differences between these results and other results published for the same bearing without the bolt preload are identified and discussed.

1.
Reddi
,
M. M.
,
1969
, “
The Finite Element Solution of the Incompressible Lubrication Problem
,”
ASME J. Lubr. Technol.
,
91
, pp.
524
533
.
2.
Booker
,
J. F.
, and
Huebner
,
K. H.
,
1972
, “
Application of Finite Element Methods to Lubrication: An Engineering Approach
,”
ASME J. Lubr. Technol.
,
94
, pp.
313
323
.
3.
LaBouff
,
G. A.
, and
Booker
,
J. F.
,
1985
, “
Dynamically Loaded Journal Bearings: A Finite Element Treatment for Rigid and Elastic Surfaces
,”
ASME J. Tribol.
,
107
, pp.
505
515
.
4.
Goenka
,
P. K.
, and
Oh
,
K. P.
,
1986
, “
The Elastohydrodynamic Solution of a Journal Bearing Under Dynamic Loading
,”
ASME J. Tribol.
,
107
, pp.
389
395
.
5.
McIvor
,
J. D. C.
, and
Fenner
,
D. N.
,
1989
, “
Finite Element Analysis of Dynamically Loaded Flexible Journal Bearings: A Fast Newton-Raphson Method
,”
ASME J. Tribol.
,
111
, pp.
597
604
.
6.
Fantino, B., 1981, “Influence des defauts de forme et des deformations elastiques des surfaces en lubrification hydrodynamique sous charges statiques et dynamiques,” These No. 1-DE-8122, INSA de Lyon, France.
7.
Fantino, B., Godet, M., and Frene, J., 1983, “Dynamic Behaviour of an Elastic Connecting Rod Bearing: Theoretical Study,” Proceedings of the Society of Automotive Engines, Study of Engine Bearings and Lubrication S. P. 539 No. 830307, pp. 23–32.
8.
Fantino
,
B.
, and
Frene
,
J.
,
1983
, “
Comparison of Dynamic Behaviour of Elastic Connecting Rod Bearing in Both Petrol and Diesel Engines
,”
ASME J. Tribol.
,
107
, pp.
87
91
.
9.
Goenka
,
P. K.
, and
Oh
,
K. P.
,
1986
, “
An Optimum Short Bearing Theory for the Elastohydrodynamic Solution of Journal Bearings
,”
Transaction of the ASME
,
108
, pp.
294
299
.
10.
Goenka
,
P. K.
, and
Oh
,
K. P.
,
1986
, “
An Optimum Connecting Rod Design Study—A Lubrication Viewpoint
,”
ASME J. Tribol.
,
108
, pp.
487
496
.
11.
Rohde
,
S. M.
, and
Li
,
D. F.
,
1980
, “
A Generalized Short Bearing Theory
,”
ASME J. Lubr. Technol.
,
102
, No.
3
, pp.
278
282
.
12.
Mc Ivor
,
J. D. C.
, and
Fenner
,
D. N.
,
1988
, “
An Evaluation of Eight-Node Quadrilateral Finite Elements for the Analysis of a Dynamically Loaded Journal Bearing
,”
Proc. I. Mech. Eng.
,
202
, No.
C2
, pp.
95
101
.
13.
Kumar
,
A.
, and
Booker
,
J. F.
,
1991
, “
A Finite Element Cavitation Algorithm
,”
Transaction of the ASME
,
113
, pp.
276
283
.
14.
Bonneau
,
D.
,
Guines
,
D.
,
Frene
,
J.
, and
Toplosky
,
J.
,
1995
, “
EHD Analysis, Including Structural Inertia Effects and a Mass-Conserving Cavitation Model
,”
Transaction of the ASME
,
117
, pp.
540
547
.
15.
Optasanu
,
V.
, and
Bonneau
,
D.
,
2000
, “
Finite Element Mass-Conserving Cavitation Algorithm in Pure Squeeze Motion. Validation/Application to a Connecting Rod Small End Bearing
,”
Transaction of the ASME
,
122
, pp.
162
169
.
16.
Kumar
,
A.
,
Goenka
,
P. K.
, and
Booker
,
J. F.
,
1990
, “
Modal Analysis of Elastohydrodynamic Lubrication: a Connecting Rod Application
,”
Transaction of the ASME
,
112
, pp.
524
534
.
17.
Boedo, S., Booker, J. F., and Wilkie, M. J., 1995, “A Mass-Conserving Modal Analysis for Elastohydrodynamic Lubrication,” Proc. of 21st Leeds-Lyon Symposium on Tribology, Lubricant and Lubrication, D. Dowson, and C. M. Taylor, eds.
18.
Boedo
,
S.
, and
Booker
,
J. F.
,
1997
, “
Surface Roughness and Structural Inertia in a Mode-Based Mass-Conserving Elastohydrodynamic Lubrication Model
,”
Transaction of the ASME
,
119
, pp.
449
455
.
19.
Boedo
,
S.
, and
Booker
,
J. F.
,
2000
, “
A Mode-Based Elastohydrodynamic Lubrication Model With Elastic Journal and Sleeve
,”
Transaction of the ASME
,
122
, pp.
94
102
.
20.
Knoll
,
G.
,
Lang
,
J.
, and
Rienacker
,
A.
,
1996
, “
Transient EHD Connecting Rod Analysis: Full Dynamic Versus Quasi-Static Deformation
,”
Transaction of the ASME
,
118
, pp.
349
355
.
21.
Zienkiewicz, O. C., 1970, The Finite Element Method in Engineering Science, 3rd ed., McGraw-Hill, London.
22.
Oh
,
K. P.
,
1984
, “
The Numerical Solution of Dynamically Loaded Elastohydrodynamic Contact as a Nonlinear Complementarity Problem
,”
Transaction of the ASME
,
106
, pp.
88
95
.
23.
Campbell
,
J.
,
Love
,
P. P.
,
Martin
,
F. A.
, and
Rafique
,
S. O.
,
1967
, “
Bearings for Reciprocating Machinery: A Review of the Present State of Theoretical, Experimental and Service Knowledge
,”
Proc. Instn. Mech. Engrs.
,
182
, Part 3A, pp.
51
74
.
24.
Jones, G. J., 1982, “Crankshaft Bearings: Oil Film History,” Proc. 9th Leeds-Lyon Symposium on Tribology, Sept. 1982, pp. 82–88.
25.
Martin, F. A., Booker, J. F., and Lo, P. M., 1987, “Power Loss in Connecting Rod Bearings” IME, Conf. On Tribology Friction and Wear, London, Paper C167/87, pp. 701–708.
26.
Floberg
,
L.
,
1965
, “
On Hydrodynamic Lubrication with Special Reference to Subcavity Pressures and Number of Streamers in Cavitation Region
,”
Acta Polytech. Scand., Mech. Eng. Ser.
, series no. 19, p.
1
1
.
You do not currently have access to this content.