An elastic-plastic asperity fractal model for analyzing the contact of rough surfaces is presented. Instead of using the power-law relation, which is widely used to predict the number, N, of contact spots with the area larger than the area of a in per unit apparent area, the size-distribution functions valid in the elastic, elastoplastic, and fully plastic deformations have been individually developed in the present model for contact surfaces with elliptic asperities. These three size-distribution functions can be used in the calculations of the N value. The error in the number N, which exists between the results predicted by the present model and those obtained from experiments, is greatly reduced as compared with the error arising between the experimental results and those predicted by the power-law model. If the topothesy, G, and the fractal dimension, D, of contact surfaces are properly chosen to conform to those given plasticity indices, the results predicted by the present model are considerably closer to that predicted by one published study. Changes in the ellipticity parameter of contact spots may introduce a substantial difference in the relationship established for the real contact area and the total load.

1.
Greenwood
,
J. A.
, and
Williamson
,
J. B. P.
,
1966
, “
Contact of Nominally Flat Surfaces
,”
Proc. R. Soc. London, Ser. A
,
295
, pp.
300
319
.
2.
Nayak
,
P. R.
,
1971
, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
,
93
, pp.
398
407
.
3.
Nayak
,
P. R.
,
1973
, “
Random Process Model of Rough Surfaces in Plastic Contact
,”
Wear
,
26
, pp.
305
333
.
4.
McCool
,
J. I.
,
1986
, “
Comparison of Model for Contact of Rough Surfaces
,”
Wear
,
107
, pp.
37
60
.
5.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
, pp.
257
263
.
6.
Pullen
,
J.
, and
Williamson
,
J. B. P.
,
1972
, “
On The Plastic Contact of Rough Surfaces
,”
Proc. R. Soc. London, Ser. A
,
327
, pp.
159
173
.
7.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
, pp.
657
662
.
8.
Kogut
,
L.
, and
Etsion
,
I.
,
2003
, “
A Finite Element Based Elastic-Plastic Model for the Contact of Rough Surface
,”
Tribol. Trans.
,
46
, pp.
383
390
.
9.
Gagnepain
,
J. J.
, and
Roques-Carmes
,
C.
,
1986
, “
Fractal Approach to Two-Dimensional and Three-Dimensional Surface Roughness
,”
Wear
,
109
, pp.
119
126
.
10.
Majumdar
,
A.
, and
Tien
,
C. L.
,
1990
, “
Fractal Characterization and Simulation of Rough Surfaces
,”
Wear
,
136
, pp.
313
327
.
11.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1990
, “
Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces
,”
ASME J. Tribol.
,
112
, pp.
205
216
.
12.
Majumdar
,
A.
, and
Bhushan
,
B.
,
1991
, “
Fractal Model of Elastic-Plastic Contact Between Rough Surfaces
,”
ASME J. Tribol.
,
113
, pp.
1
11
.
13.
Bhushan
,
B.
, and
Majumdar
,
A.
,
1992
, “
Elastic-Plastic Contact Model for Bifractal Surfaces
,”
Wear
,
153
, pp.
53
64
.
14.
Blackmore
,
D.
, and
Zhou
,
G.
,
1998
, “
A New Fractal Model for Anisotropic Surfaces
,”
Int. J. Mach. Tools Manuf.
,
38
, pp.
551
557
.
15.
Blackmore
,
D.
, and
Zhou
,
J. G.
,
1998
, “
Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces
,”
Fractals
,
6
(
1
), pp.
43
58
.
16.
Zahouani
,
H.
,
Vargiolu
,
R.
, and
Loubet
,
J. L.
,
1998
, “
Fractal Models of Surface Topography and Contact Mechanics
,”
Math. Comput. Modell.
,
28
(
4–8
), pp.
517
534
.
17.
Yan
,
W.
, and
Komvopoulos
,
K.
,
1998
, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
,
84
(
7
), pp.
3617
3624
.
18.
Mandelbort, B. B., 1982, The Fractal Geometry of Nature, W. H. Freeman, New York.
19.
Othmani
,
A.
, and
Kaminsky
,
C.
,
1998
, “
Three Dimensional Fractal Analysis of Sheet Metal Surfaces
,”
Wear
,
214
, pp.
147
150
.
20.
Bhushan, B., 1995, Handbook of Micro/Nano Tribology, CRC Press, Boca Raton, FL.
21.
Komvopoulos
,
K.
, and
Ye
,
N.
,
2001
, “
Three-dimensional contact analysis of elastic-plastic layered media with fractal surface topographies
,”
ASME J. Tribol.
,
123
, pp.
632
640
.
22.
Bhushan
,
B.
, and
Dugger
,
M. T.
,
1990
, “
Real Contact Area Measurements on Magnetic Rigid Disks
,”
Wear
,
137
, pp.
41
50
.
23.
Johnson, K. L., 1987, Contact Mechanics, Cambridge University Press, Cambridge, England.
24.
Mendelson, A., 1968, Plasticity: Theory and Applications, Macmillan, New York.
25.
Tabor, D., 1951, The Hardness of Metals, Clarendon Press, Oxford, UK.
26.
Sackfield
,
A.
, and
Hills
,
D. A.
,
1983
, “
Some Useful Results in the Classical Hertz Contact Problem
,”
J. Strain Anal.
,
18
, pp.
101
105
.
27.
Jeng
,
Y. R.
, and
Wang
,
P. Y.
,
2003
, “
An Elliptical Microcontact Model Considering Elastic, Elastoplastic, and Plastic Deformation
,”
ASME J. Tribol.
,
125
, pp.
232
240
.
28.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
,
1979
, “
Strongly Anisotropic Rough Surface
,”
ASME J. Lubr. Technol.
,
101
, pp.
15
20
.
You do not currently have access to this content.