Surface cracking in a multi-layered medium due to sliding of a rigid asperity was analyzed using linear elastic fracture mechanics and the finite element method. Overlapping of the crack faces and assumptions about the distributions of surface tractions were avoided by using special contact elements. The main objectives of this study were to obtain solutions for the tensile and shear stress intensity factor (SIF) and to determine the crack propagation path in the first layer due to repetitive sliding. The crack propagation direction was predicted based on the maximum (tensile or shear) SIF range. The effects of the crack length, sliding friction, and crack-face friction on the SIF and crack propagation direction are discussed in the context of finite element solutions. Simulation results demonstrate the effects of crack growth in the elastic surface layer on the accumulation of plastic strain in the elastic-plastic underlying layer and the significance of the crack growth increment on the propagation path. It is shown that the surface crack propagates toward the layer interface at an angle of ∼57° from the original crack plane, independent of the crack growth increment, in fair agreement with experimental observations. Based on the obtained results, a general fatigue approach for surface cracking is derived for multi-layered media subjected to repetitive sliding contact.

1.
King
,
R. B.
, and
O’Sullivan
,
T. C.
,
1987
, “
Sliding Contact Stresses in a Two-Dimensional Layered Elastic Half-Space
,”
Int. J. Solids Struct.
,
23
, pp.
581
597
.
2.
Kral
,
E. R.
, and
Komvopoulos
,
K.
,
1996
, “
Three-Dimensional Finite Element Analysis of Surface Deformation and Stresses in an Elastic-Plastic Layered Medium Subjected to Indentation and Sliding Contact Loading
,”
ASME J. Appl. Mech.
,
63
, pp.
365
375
.
3.
Lawn, B., 1992, “Friction Processes in Brittle Fracture,” Fundamentals of Friction: Macroscopic and Microscopic Processes, ASI Series E: Appl. Sci., I. L. Singer and H. M. Pollock, eds., NATO 220, pp. 137–165.
4.
Wu
,
T. W.
,
1991
, “
Microscratch and Load Relaxation Tests for Ultra-Thin Films
,”
J. Mater. Res.
,
6
, pp.
407
426
.
5.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2003
, “
Effect of Surface Patterning on Contact Deformation of Elastic-Plastic Layered Media
,”
ASME J. Tribol.
,
125
, pp.
16
24
.
6.
Gong
,
Z.-Q.
, and
Komvopoulos
,
K.
,
2004
, “
Mechanical and Thermomechanical Elastic-Plastic Contact Analysis of Layered Media With Patterned Surfaces
,”
ASME J. Tribol.
,
126
, pp.
9
17
.
7.
Keer
,
L. M.
, and
Worden
,
R. E.
,
1990
, “
A Qualitative Model to Describe the Microchipping Wear Mode in Ceramic Rollers
,”
Tribol. Trans.
,
33
, pp.
411
417
.
8.
Keer
,
L. M.
, and
Kuo
,
C. H.
,
1992
, “
Cracking in a Loaded Brittle Elastic Half-Space
,”
Int. J. Solids Struct.
,
29
, pp.
1819
1826
.
9.
Chen
,
S. Y.
,
Farris
,
T. N.
, and
Chandrasekar
,
S.
,
1991
, “
Sliding Microindentation Fracture of Brittle Materials
,”
Tribol. Trans.
,
34
, pp.
161
168
.
10.
Bower
,
A. F.
, and
Fleck
,
N. A.
,
1994
, “
Brittle Fracture Under a Sliding Line Contact
,”
J. Mech. Phys. Solids
,
42
, pp.
1375
1396
.
11.
Beuth
,
J. L.
, and
Klingbeil
,
N. W.
,
1996
, “
Cracking of Thin Films Bonded to Elastic-Plastic Substrates
,”
J. Mech. Phys. Solids
,
44
, pp.
1411
1428
.
12.
Oliveira
,
S. A. G.
, and
Bower
,
A. F.
,
1996
, “
An Analysis of Fracture and Delamination in Thin Coatings Subjected to Contact Loading
,”
Wear
,
198
, pp.
15
32
.
13.
Abdel Mageed
,
A. M.
, and
Pandey
,
R. K.
,
1992
, “
Studies on Cyclic Crack Path and the Mixed-Mode Crack Closure Behaviour in Al Alloy
,”
Int. J. Fatigue
,
14
, pp.
21
29
.
14.
Alfredsson
,
B.
, and
Olsson
,
M.
,
2000
, “
Initiation and Growth of Standing Contact Fatigue Cracks
,”
Eng. Fract. Mech.
,
65
, pp.
89
106
.
15.
Lin
,
X. B.
, and
Smith
,
R. A.
,
1999
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates, Part I: The Numerical Technique
,”
Eng. Fract. Mech.
,
63
, pp.
503
522
.
16.
Lin
,
X. B.
, and
Smith
,
R. A.
,
1999
, “
Finite Element Modelling of Fatigue Crack Growth of Surface Cracked Plates, Part III: Stress Intensity Factor and Fatigue Crack Growth Life
,”
Eng. Fract. Mech.
,
63
, pp.
541
556
.
17.
Ko
,
P. L.
,
Iyer
,
S. S.
,
Vaughan
,
H.
, and
Gadala
,
M.
,
2001
, “
Finite Element Modelling of Crack Growth and Wear Particle Formation in Sliding Contact
,”
Wear
,
250
, pp.
1265
1278
.
18.
Komvopoulos
,
K.
, and
Choi
,
D.-H.
,
1992
, “
Elastic Finite Element Analysis of Multi-Asperity Contacts
,”
ASME J. Tribol.
,
114
, pp.
823
831
.
19.
Henshell
,
R. D.
, and
Shaw
,
K. G.
,
1975
, “
Crack Tip Finite Elements Are Unnecessary
,”
Int. J. Numer. Methods Eng.
,
9
, pp.
495
507
.
20.
Barsoum
,
R. S.
,
1976
, “
On the Use of Isoparametric Finite Elements in Linear Fracture Mechanics
,”
Int. J. Numer. Methods Eng.
,
10
, pp.
25
37
.
21.
Hertzberg, R. W., 1996, Deformation and Fracture Mechanics of Engineering Materials, Wiley, New York.
22.
Chan
,
S. K.
,
Tuba
,
I. S.
, and
Wilson
,
W. K.
,
1970
, “
On the Finite Element Method in Linear Fracture Mechanics
,”
Eng. Fract. Mech.
,
2
, pp.
1
17
.
23.
Komvopoulos
,
K.
, and
Cho
,
S.-S.
,
1997
, “
Finite Element Analysis of Subsurface Crack Propagation in a Half-Space Due to a Moving Asperity Contact
,”
Wear
,
209
, pp.
57
68
.
24.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
,
85
, pp.
528
534
.
25.
Erdogan
,
F.
, and
Sih
,
G. C.
,
1963
, “
On the Crack Extension in Plates Under Plane Loading and Transverse Shear
,”
ASME J. Basic Eng.
,
85
, pp.
519
527
.
26.
Ritchie
,
R. O.
, and
Dauskardt
,
R. H.
,
1991
, “
Cyclic Fatigue of Ceramics—A Fracture Mechanics Approach to Subcritical Crack Growth and Life Prediction
,”
J. Ceram. Soc. Jpn.
,
99
, pp.
1047
1062
.
You do not currently have access to this content.