Instead of a general consideration of the fractal dimension (D) and the topothesy (G*) as two invariants in the fractal analysis of surface asperities, these two roughness parameters in the present study are varied by changing the mean separation (d*) of two contact surfaces. The relationship between the fractal dimension and the mean separation is found first. By equating the structure functions developed in two different ways, the relationship among the scaling coefficient in the power spectrum function, the fractal dimension, and topothesy of asperity heights can be established. The variation of topothesy can be determined when the fractal dimension and the scaling coefficient have been obtained from the experimental results of the number of contact spots and the power spectrum function at different mean separations. A numerical scheme is developed in this study to determine the convergent values of fractal dimension and topothesy corresponding to a given mean separation. The theoretical results of the contact spot number predicted by the present model show good agreement with the reported experimental results. Both the fractal dimension and the topothesy are elevated by increasing the mean separation. Significant differences in the contact load or the total contact area are shown between the models of constant D and G* and variable D and G* as the mean separation is reduced to smaller values.

1.
Mandelbrot
,
B. B.
, 1967, “
How Long is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension
,”
Science
0036-8075,
155
, pp.
636
638
.
2.
Majumdar
,
A.
, and
Bhushan
,
B.
, 1991, “
Fractal Model of Elastic-Plastic Contact between Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
113
, pp.
1
11
.
3.
Bhushan
,
B.
, and
Majumdar
,
A.
, 1992, “
Elastic-Plastic Contact for Bifractal Surfaces
,”
Wear
0043-1648,
153
, pp.
53
64
.
4.
Blackmore
,
D.
, and
Zhou
,
G.
, 1998, “
A New Fractal Model for Anisotropic Surfaces
,”
Int. J. Mach. Tools Manuf.
0890-6955,
38
, pp.
551
557
.
5.
Blackmore
,
D.
, and
Zhou
,
J. G.
, 1998, “
Fractal Analysis of Height Distributions of Anisotropic Rough Surfaces
,”
Fractals
0218-348X,
6
, pp.
43
58
.
6.
Zahouani
,
H.
,
Vargiolu
,
R.
, and
Loubet
,
J. L.
, 1998, “
Fractal Models of Surface Topography and Contact Mechanics
,”
Math. Comput. Modell.
0895-7177,
28
, pp.
517
534
.
7.
Yan
,
W.
, and
Komvopoulos
,
K.
, 1998, “
Contact Analysis of Elastic-Plastic Fractal Surfaces
,”
J. Appl. Phys.
0021-8979,
84
, pp.
3617
3624
.
8.
Mandelbrot
,
B. B.
, 1982,
The Fractal Geometry of Nature
,
W. H.
Freeman
,
New York.
9.
Othmani
,
A.
, and
Kaminsky
,
C.
, 1998, “
Three Dimensional Fractal Analysis of Sheet Metal Surfaces
,”
Wear
0043-1648,
214
, pp.
147
150
.
10.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2004, “
Fractal Model Developed for Elliptic Elastic-Plastic Asperity Microcontacts of Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
126
, pp.
646
654
.
11.
Ausloos
,
M.
, and
Berman
,
D.
, 1985, “
A Multivariate Weierstrass-Mandelbrot Function
,”
Proc. R. Soc. London, Ser. A
1364-5021,
400
, pp.
331
350
.
12.
Blackmore
,
D.
, and
Zhau
,
G.
, 1996, “
A General Fractal Distribution Function for Rough Surface Profiles
,”
SIAM J. Appl. Math.
0036-1399,
56
, pp.
1694
1719
.
13.
Chung
,
J. C.
, and
Lin
,
J. F.
, 2006, “
Variation in Fractal Properties and Non-Gaussian Distributions of Microcontact between Elastic-Plastic Rough Surfaces With Mean Surface Separation
,”
ASME J. Appl. Mech.
0021-8936,
73
, pp.
143
152
.
14.
Bhushan
,
B.
, and
Dugger
,
M. T.
, 1990, “
Real Contact Area Measurements on Magnetic Rigid Disks
,”
Wear
0043-1648,
137
, pp.
41
50
.
15.
Johnson
,
K. L
, 1987,
Contact Mechanics
,
Cambridge U.P.
, Cambridge, UK.
16.
Chang
,
W. R.
,
Etsion
,
I.
, and
Bogy
,
D. B.
, 1988, “
Static Friction Coefficient Model for Metallic Rough Surfaces
,”
ASME J. Tribol.
0742-4787,
10
, pp.
57
63
.
17.
Kogut
,
L.
, and
Etsion
,
I.
, 2002, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
0021-8936,
69
, pp.
657
662
.
18.
Ogilvy
,
J. A.
, 1991, “
Numerical Simulation of Friction between Contacting Rough Surfaces
,”
J. Phys. D
0022-3727,
24
, pp.
2098
2109
.
19.
Komvopoulos
,
K.
, and
Ye
,
N.
, 2001, “
Three-Dimensional Contact Analysis of Elastic-Plastic Layered Media With Fractal Surface Topographies
,”
ASME J. Tribol.
0742-4787,
123
, pp.
632
640
.
20.
Bush
,
A. W.
,
Gibson
,
R. D.
, and
Keogh
,
G. P.
, 1979, “
Strongly Anisotropic Rough Surface
,”
ASME J. Lubr. Technol.
0022-2305,
101
, pp.
15
20
.
21.
Mandelbrot
,
B. B.
, 1975, “
Stochastic Models for the Earth’s Relief, the Sharp and the Fractal Dimension of the Coastlines, and the Number-Area Rule for Islands
,”
Proc. Natl. Acad. Sci. U.S.A.
0027-8424,
72
, pp.
3825
3828
.
22.
Berry
,
M. V.
, 1979, “
Diffractals
,”
J. Phys. A
0305-4470,
12
, pp.
781
797
.
23.
Nayak
,
P. R.
, 1971, “
Random Process Model of Rough Surfaces
,”
ASME J. Lubr. Technol.
0022-2305,
93
, pp.
398
407
.
24.
Bhushan
,
B.
, 1999,
Handbook of Micro/Nano Tribology
, 2nd ed.,
CRC
, Boca Raton, FL.
You do not currently have access to this content.