The role of microstructure is quite significant in fretting because the scale of plastic strain localization near the surface is on the order of key microstructure features. A dual-phase Ti-6Al-4V alloy that tends to be susceptible to fretting is considered as a model material. Fretting is simulated using a two-dimensional finite element analysis. A crystal plasticity theory with a two-dimensional planar triple slip idealization is employed to represent the hexagonal close packed structure of the α phase of Ti. Modifications of the slip system strengths enable multiple phases to be considered. In this study, the effects of grain orientation distribution, grain size and geometry, as well as the phase distribution and their arrangement, are considered in simulations. Implications of the results are discussed.

1.
Chan
,
K. S.
,
Wojcik
,
C. C.
, and
Koss
,
D. A.
, 1981, “
Deformation of an Alloy with a Lamellar Microstructure: Experimental Behavior of Individual Widmanstatten Colonies of an α-β Titanium Alloy
,”
Metall. Trans. A
0360-2133,
12A
, pp.
1899
1907
.
2.
Uggowitzer
,
P.
, and
Stüwe
,
H. P.
, 1982, “
Plasticity of Ferritic-Martensitic Two-Phase Steels
,”
Z. Metallkd.
0044-3093,
73
(
5
), pp.
277
285
.
3.
Werner
,
E.
, and
Stüwe
,
H. P.
, 1984, “
Phase Boundaries as Obstacles to Dislocation Motion
,”
Mater. Sci. Eng.
0025-5416,
68
, pp.
175
182
.
4.
Lutjering
,
G.
, 1998, “
Influence of Processing on Microstructure and Mechanical Properties of (α+β) Titanium Alloys
,”
Mater. Sci. Eng., A
0921-5093,
243
, pp.
32
45
.
5.
Morrissey
,
R. J.
,
McDowell
,
D. L.
, and
Nicholas
,
T.
, 2001, “
Microplasticity in HCF of Ti-6Al-4V
,”
Int. J. Fatigue
0142-1123,
23
(Suppl. 1), pp.
S55
S64
.
6.
Goh
,
C.-H.
,
Wallace
,
J. M.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
, 2001, “
Polycrystal Plasticity Simulations of Fretting Fatigue
,”
Int. J. Fatigue
0142-1123,
23
(Suppl. 1), pp.
S423
S435
.
7.
Goh
,
C.-H.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
, 2003, “
Influence of Nonhomogeneous Material in Fretting Fatigue
,”
Fretting Fatigue: Advances in Basic Understanding and Applications, STP 1425
,
ASTM International
, pp.
183
205
.
8.
Goh
,
C.-H.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
, 2003, “
Characteristics of Plastic Deformation Field in Polycrystalline Fretting Contacts
,”
Int. J. Fatigue
0142-1123,
25
(
9–11
), pp.
1047
1058
.
9.
Goh
,
C.-H.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
, 2003, “
Crystallographic Plasticity in Fretting of Ti-6Al-4V
,”
Int. J. Plast.
0749-6419,
19
(
10
), pp.
1627
1650
.
10.
Goh
,
C.-H.
,
McDowell
,
D. L.
, and
Neu
,
R. W.
, 2006, “
Plasticity in Polycrystalline Fretting Fatigue Contacts
,”
J. Mech. Phys. Solids
0022-5096,
54
(
2
), pp.
340
367
.
11.
Mayeur
,
J. R.
, 2004, “
Three Dimensional Modeling of Ti-Al Alloys with Applications to Attachment Fatigue
,” M.S. thesis, The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.
12.
Kapoor
,
A.
, 1994, “
A Re-evaluation of the Life to Rupture of Ductile Metals by Cyclic Plastic Strain
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
17
, pp.
201
219
.
13.
Kapoor
,
A.
, 1997, “
Wear by Plastic Ratcheting
,”
Wear
0043-1648,
212
, pp.
119
130
.
14.
Kapoor
,
A.
, and
Johnson
,
K. L.
, 1995, “
Plastic Ratchetting as a Mechanism of Erosive Wear
,”
Wear
0043-1648,
186–187
, pp.
86
91
.
15.
Ringsberg
,
J. W.
,
Loo-Morrey
,
M.
,
Josefson
,
B. L.
,
Kapoor
,
A.
, and
Beynon
,
J. H.
, 2000, “
Prediction of Fatigue Crack Initiation for Rolling Contact Fatigue
.”
Int. J. Fatigue
0142-1123,
22
, pp.
205
215
.
16.
Rainforth
,
W. M.
, 2000, “
Microstructural Evolution at the Worn Surface: A Comparison of Metals and Ceramics
,”
Wear
0043-1648,
245
, pp.
162
177
.
17.
Wallace
,
J. M.
, and
Neu
,
R. W.
, 2003, “
Fretting Fatigue Crack Nucleation in Ti-6Al-4V
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
26
, pp.
199
214
.
18.
Hughes
,
D. A.
,
Dawson
,
D. B.
,
Korellis
,
J. S.
, and
Weingarten
,
L. I.
, 1994, “
Near Surface Microstructures Developing under Large Sliding Loads
,”
J. Mater. Eng. Perform.
1059-9495,
3
(
4
), pp.
459
475
.
19.
Johnson
,
K. L.
, 1985,
Contact Mechanics
,
Cambridge U. P.
,
Cambridge
.
20.
Ambrico
,
J. M.
, and
Begley
,
M. R.
, 2000, “
Plasticity in Fretting Contact
,”
J. Mech. Phys. Solids
0022-5096,
28
(
11
), pp.
2391
2417
.
21.
Bennett
,
V.
, 1999, “
A Study of Microscale Phenomena in Small Crack Propagation under Multiaxial Fatigue
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
22.
McGinty
,
R. D.
, and
McDowell
,
D. L.
, 1999, “
Multiscale Polycrystal Plasticity
,”
ASME J. Eng. Mater. Technol.
0094-4289,
121
, pp.
203
209
.
23.
McGinty
,
R. D.
, 2001, “
Multiscale Representation of Polycrystalline Inelasticity
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
24.
ABAQUS, version 5.8, 1998, Hibbitt, Karlsson and Sorensen, Inc., Pawtucket, RI.
25.
Russo
,
R. A.
, and
Seagle
,
S. R.
, 1994, “
Deformation and Recrystallization of Titanium and Its Alloys
,” ASM International, Course, 27, Lesson Test 5.
26.
Morrissey
,
R. J.
, 2001, “
Strain Accumulation and Shakedown in Fatigue of Ti-6Al-4V
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
27.
Kocks
,
U. F.
, 1975, “
Constitutive Relations for Slip
,”
Constitutive Equations in Plasticity
,
A. S.
Argon
(ed.),
MIT
,
Cambridge, MA
, pp.
81
115
.
28.
Bronkhorst
,
C. A.
,
Kalidindi
,
S. R.
, and
Anand
,
L.
, 1992, “
Polycrystalline Plasticity and the Evolution of Crystallographic Texture in FCC Metals
,”
Philos. Trans. R. Soc. London, Ser. A
0962-8428,
341
, pp.
443
477
.
29.
Goh
,
C.-H.
, 2002, “
Crystallographic Plasticity in Fretting of Ti-6Al-4V
,” Ph.D. thesis, Georgia Institute of Technology, Atlanta, GA.
30.
Hills
,
D. A.
, and
Nowell
,
D.
, 1994,
Mechanics of Fretting Fatigue
,
Kluwer Academic
,
Dordrecht
.
31.
Akahori
,
T.
,
Niinomi
,
M.
, and
Fukunaga
,
K.-I.
, 2000, “
An Investigation of the Effect of Fatigue Deformation on the Residual Mechanical Properties of Ti-6Al-4V ELI
,”
Metall. Mater. Trans. A
1073-5623,
31A
, pp.
1937
1948
.
32.
Swalla
,
D. R.
,
Neu
,
R. W.
, and
McDowell
,
D. L.
, 2004, “
Microstructural Characterization of Ti-6Al-4V Subjected to Fretting
,”
ASME J. Tribol.
0742-4787,
126
, pp.
809
816
.
33.
Horstemeyer
,
M. F.
,
McDowell
,
D. L.
, and
Fan
,
J.
, 2000, “
From Atoms to Autos A New Design Paradigm Using Microstructure-Property Modeling Part 2: Cyclic Fatigue
,” Sandia Report, SAND2000, Sandia National Laboratories, CA.
You do not currently have access to this content.