An engineered thermal management is fundamental to the application of gas foil bearings (GFBs) as turboshaft supports in rotorcraft propulsion systems. The paper presents a model for the thermal energy transport in a rotor-GFB system operating at high temperature with typical inner and/or outer cooling flows. Predicted film temperatures agree with published test data, demonstrating the effectiveness of an outer cooling stream to remove heat and to control the operating temperature. The inner flow stream is not as efficient. The analysis shows paths of thermal energy by conduction and convection to assist in the design and troubleshooting of rotor-GFB systems operating hot. Bearing temperatures and shaft motions measurements are obtained in a test rotor electrically heated to 132°C. In speed-up tests to 26 krpm, the rotor motion amplitude drops suddenly just above the critical speed, thus, evidencing the typical hardening of compliant bearings. At the hottest test condition, since air is more viscous, the rotor peak motion amplitude decreases, not showing a jump. The coastdown tests show the critical speed increases slightly as the temperature increases.

1.
Howard
,
S. A.
,
Bruckner
,
R. J.
,
DellaCorte
,
C.
, and
Radil
,
K. C.
, 2008, “
Preliminary Analysis for an Optimized Oil-Free Rotorcraft Engine Concept
,” Report No. NASA/TM-2008-215064.
2.
DellaCorte
,
C.
, and
Valco
,
M. J.
, 2000, “
Load Capacity Estimation of Foil Air Journal Bearing for Oil-Free Turbomachinery Applications
,”
STLE Tribol. Trans.
1040-2004,
43
(
4
), pp.
795
801
.
3.
Agrawal
,
G. L.
, 1997, “
Foil Air/Gas Bearing Technology—An Overview
,” ASME Paper No. 97-GT-347.
4.
Lubell
,
D.
,
DellaCorte
,
C.
, and
Stanford
,
M.
, 2006, “
Test Evolution and Oil-Free Engine Experience of a High Temperature Foil Air Bearing Coating
,” ASME Paper No. GT2006-90572.
5.
Radil
,
K.
,
Howard
,
S.
, and
Dykas
,
B.
, 2002, “
The Role of Radial Clearance on the Performance of Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
45
, pp.
485
490
.
6.
Radil
,
K. C.
, and
Zeszotek
,
M.
, 2004, “
An Experimental Investigation Into the Temperature Profile of a Compliant Foil Air Bearing
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
470
479
.
7.
Dykas
,
B.
, and
Howard
,
S. A.
, 2004, “
Journal Design Considerations for Turbomachine Shafts Supported on Foil Air Bearings
,”
STLE Tribol. Trans.
1040-2004,
47
(
4
), pp.
508
516
.
8.
DellaCorte
,
C.
, 1997, “
A New Foil Air Bearing Test Rig for Use to 700°C and 70,000 rpm
,” Report No. NASA TM-107405.
9.
DellaCorte
,
C.
,
Valco
,
M. J.
,
Radil
,
K. C.
, and
Heshmat
,
H.
, 1999, “
Performance and Durability of High Temperature Foil Air Bearings for Oil-Free Turbomachinery
,” Report No. NASA/TM-1999-209187.
10.
DellaCorte
,
C.
,
Zaldana
,
A. R.
, and
Radil
,
K. C.
, 2004, “
A Systems Approach to the Solid Lubrication of Foil Air Bearings for Oil-Free Turbomachinery
,”
ASME J. Tribol.
0742-4787,
126
(
1
), pp.
200
207
.
11.
Bauman
,
S.
, 2005, “
An Oil-Free Thrust Foil Bearing Facility Design Calibration, and Operation
,” Report No. NASA/TM-2005-213568.
12.
Howard
,
S.
,
DellaCorte
,
C.
,
Valco
,
M. -J.
,
Prahl
,
J. -M.
, and
Heshmat
,
H.
, 2001, “
Steady-State Stiffness of Foil Air Journal Bearings at Elevated Temperatures
,”
STLE Tribol. Trans.
1040-2004,
44
(
3
), pp.
489
493
.
13.
Howard
,
S.
,
DellaCorte
,
C.
,
Valco
,
M. J.
,
Prahl
,
J. M.
, and
Heshmat
,
H.
, 2001, “
Dynamic Stiffness and Damping Characteristics of a High-Temperature Air Foil Journal Bearing
,”
STLE Tribol. Trans.
1040-2004,
44
(
4
), pp.
657
663
.
14.
Lee
,
Y. -B.
,
Jo
,
J. -H.
,
Park
,
D. -J.
,
Kim
,
C. -H.
, and
Rhim
,
Y. -C.
, 2006, “
Dynamic Characteristics of Bump Foils Considering With Thermal Effect in Air Foil Bearings
,” ASME Paper No. IJTC2006-12189.
15.
Stanford
,
M. K.
,
DellaCorte
,
C.
, and
Eylon
,
D.
, 2002, “
Particle Morphology Effects on Flow Characteristics of PS304 Plasma Spray Coating Feedstock Powder Blend
,” Report No. NASA/TM-2002-211206.
16.
Salehi
,
M.
,
Swanson
,
E.
, and
Heshmat
,
H.
, 2001, “
Thermal Features of Compliant Foil Bearings—Theory and Experiments
,”
ASME J. Tribol.
0742-4787,
123
, pp.
566
571
.
17.
Heshmat
,
H.
,
Tomaszewski
,
M. J.
, and
Waltono
,
J. F.
, 2006, “
Small Gas Turbine Engine Operating with High-Temperature Foil Bearings
,” ASME Paper No. GT2006-90791.
18.
Radil
,
K.
,
DellaCorte
,
C.
,
Bruckner
,
R.
, and
Zessoteck
,
M.
, 2007, “
Thermal Management Techniques for Oil-Free Turbomachinery Systems
,”
STLE Tribol. Trans.
1040-2004,
50
, pp.
319
327
.
19.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2010, “
Thermohydrodynamic Analysis of Bump Type Gas Foil Bearings: A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795, to be published.
20.
Ruscitto
,
D.
,
McCormick
,
J.
, and
Gray
,
S.
, 1978, “
Hydrodynamic Air Lubricated Compliant Surface Bearing for an Automotive Gas Turbine Engine I-Journal Bearing Performance
,”
NASA
Report No. NASA CR-135368.
21.
White
,
F. M.
, 1994,
Fluid Mechanics
,
McGraw-Hill
,
New York
, Appendix A.
22.
Kutz
,
M.
, 2005,
Mechanical Engineers’ Handbook: Materials and Mechanical Design
, Vol.
1
,
Wiley
,
New York
, Chap. 8.
23.
Iordanoff
,
I.
, 1999, “
Analysis of an Aerodynamic Compliant Foil Thrust Bearing: Method for a Rapid Design
,”
ASME J. Tribol.
0742-4787,
121
, pp.
816
822
.
24.
San Andrés
,
L.
,
Rubio
,
D.
, and
Kim
,
T. H.
, 2007, “
Rotordynamic Performance of a Rotor Supported on Bump Type Foil Gas Bearings: Experiments and Predictions
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
129
(
3
), pp.
850
857
.
25.
Kim
,
T. H.
, and
San Andrés
,
L.
, 2009, “
Effect of Side End Pressurization on the Dynamic Performance of Gas Foil Bearings—A Model Anchored to Test Data
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
131
(
1
), p.
012501
.
26.
San Andrés
,
L.
, and
Kim
,
T. H.
, 2008, “
Forced Nonlinear Response of Gas Foil Bearing Supported Rotors
,”
Tribol. Int.
0301-679X,
41
(
8
), pp.
704
715
.
You do not currently have access to this content.