A new method for determining a closed-form expression for the hydrodynamic forces in finite-length plain journal bearings is introduced. The method is based on applying correction functions to the force models of the infinitely long (IL) or infinitely short (IS) bearing approximation. The correction functions are derived by modeling the ratio between the forces from the numerical integration of the two-dimensional Reynolds equation and the forces from either the IL or IS bearing approximation. Low-order polynomial models, dependent on the eccentricity ratio and aspect ratio, are used for the correction functions. A comparative computational study is presented for the steady-state behavior of the bearing system under static and unbalance loads. The results show the proposed models outperforming the standard limiting approximations as well as a model based on the finite-length impedance method.

1.
Hamrock
,
B. J.
, 1994,
Fundamentals of Fluid Film Lubrication
,
McGraw-Hill
,
New York, NY
.
2.
Khonsari
,
M. M.
, and
Booser
,
E. R.
, 2001,
Applied Tribology—Bearing Design and Lubrication
,
Wiley
,
New York, NY
.
3.
Barrett
,
L. E.
,
Allaire
,
P. E.
, and
Gunter
,
E. J.
, 1980, “
A Finite Length Bearing Correction Factor for Short Bearing Theory
,”
ASME J. Lubr. Technol.
0022-2305,
102
, pp.
283
290
.
4.
Childs
,
D.
, 1993,
Turbomachinery Rotordynamics: Phenomena, Modeling, and Analysis
,
Wiley-Interscience
,
New York, NY
.
5.
Harnoy
,
A.
, 2003,
Bearing Design in Machinery: Engineering Tribology and Lubrication
,
Marcel Dekker
,
New York, NY
.
6.
Vance
,
J. M.
, 1988,
Rotordynamics of Turbomachinery
,
Wiley-Interscience
,
New York, NY
.
7.
Fedor
,
J. V.
, 1963, “
Half Sommerfeld Approximation for Finite Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
85
, pp.
435
438
.
8.
Warner
,
P. C.
, 1963, “
Static and Dynamic Properties of Partial Journal Bearings
,”
ASME J. Basic Eng.
0021-9223,
85
, pp.
247
257
.
9.
Falkenhagen
,
G. L.
,
Gunter
,
E. J.
, and
Schuller
,
F. T.
, 1972, “
Stability and Transient Motion of Vertical Three-Lobe Bearing Systems
,”
ASME J. Eng. Ind.
0022-0817,
94
, pp.
665
677
.
10.
Hirani
,
H.
,
Athre
,
K.
, and
Biswas
,
S.
, 1999, “
Dynamically Loaded Finite Length Journal Bearings: Analytical Method of Solution
,”
ASME J. Tribol.
0742-4787,
121
, pp.
844
852
.
11.
Childs
,
D.
,
Moes
,
H.
, and
van Leeuwen
,
H.
, 1977, “
Journal Bearing Impedance Descriptions for Rotordynamic Applications
,”
ASME J. Lubr. Technol.
0022-2305,
99
, pp.
198
214
.
12.
Booker
,
J. F.
, 1965, “
Dynamically Loaded Journal Bearings: Mobility Method of Solution
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
537
546
.
13.
Moes
,
H.
, 1969, “
Discussion on a Contribution by K. Jakobsen and H. Christensen
,”
Proc. Inst. Mech. Eng., Part J: J. Eng. Tribol.
1350-6501,
183
(
3
), pp.
205
206
.
14.
Moes
,
H.
, and
Bosma
,
R.
, 1981, “
Mobility and Impedance Definitions for Plain Journal Bearings
,”
ASME J. Lubr. Technol.
0022-2305,
103
, pp.
468
470
.
15.
Goenka
,
P. K.
, 1984, “
Analytical Curve Fits for Solution Parameters of Dynamically Loaded Journal Bearings
,”
ASME J. Tribol.
0742-4787,
106
, pp.
421
428
.
16.
DuBois
,
G. B.
, and
Ocvirk
,
F. W.
, 1953, “
Analytical Derivation and Experimental Evaluation of Short-Bearing Approximation for Full Journal Bearing
,” NACA Report No. 1157, pp.
1199
1206
.
You do not currently have access to this content.