For elastic contact, an exact analytical solution for the stresses and strains within two contacting bodies has been known since the 1880s. Despite this, there is no similar solution for elastic–plastic contact due to the integral nature of plastic deformations, and the few models that do exist develop approximate solutions for the elastic–perfectly plastic material model. In this work, the full transition from elastic–perfectly plastic to elastic materials in contact is studied using a bilinear material model in a finite element environment for a frictionless dry flattening contact. Even though the contact is considered flattening, elastic deformations are allowed to happen on the flat. The real contact radius is found to converge to the elastic contact limit at a tangent modulus of elasticity around 20%. For the contact force, the results show a different trend in which there is a continual variation in forces across the entire range of material models studied. A new formulation has been developed based on the finite element results to predict the deformations, real contact area, and contact force. A second approach has been introduced to calculate the contact force based on the approximation of the Hertzian solution for the elastic deformations on the flat. The proposed formulation is verified for five different materials sets.

References

1.
Ghaednia
,
H.
, and
Marghitu
,
D. B.
,
2016
, “
Permanent Deformation During the Oblique Impact With Friction
,”
Arch. Appl. Mech.
,
86
(
1–2
), pp.
121
134
.
2.
Ghaednia
,
H.
,
Marghitu
,
D. B.
, and
Jackson
,
R. L.
,
2015
, “
Predicting the Permanent Deformation After the Impact of a Rod With a Flat Surface
,”
ASME J. Tribol.
,
137
(
1
), p.
011403
.
3.
Gheadnia
,
H.
,
Cermik
,
O.
, and
Marghitu
,
D. B.
,
2015
, “
Experimental and Theoretical Analysis of the Elasto-Plastic Oblique Impact of a Rod With a Flat
,”
Int. J. Impact Eng.
,
86
, pp.
307
317
.
4.
Brake
,
M.
,
2016
,
Mechanics Jointed Structures
, Springer, Berlin.
5.
Brake
,
M.
,
2014
, “
The Role of Epistemic Uncertainty of Contact Models in the Design and Optimization of Mechanical Systems With Aleatoric Uncertainty
,”
Nonlinear Dyn.
,
77
(
3
), pp.
899
922
.
6.
Ghaednia
,
H.
,
Jackson
,
R. L.
, and
Gao
,
J.
,
2014
, “
A Third Body Contact Model for Particle Contaminated Electrical Contacts
,”
IEEE
60th Holm Conference on Electrical Contacts (Holm)
, New Orleans, LA, Oct. 12–15, pp.
1
5
.
7.
Jackson
,
R. L.
,
Ghaednia
,
H.
,
Elkady
,
Y. A.
,
Bhavnani
,
S. H.
, and
Knight
,
R. W.
,
2012
, “
A Closed-Form Multiscale Thermal Contact Resistance Model
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
7
), pp.
1158
1171
.
8.
Golgoon
,
A.
,
Sadik
,
S.
, and
Yavari
,
A.
,
2016
, “
Circumferentially-Symmetric Finite Eigenstrains in Incompressible Isotropic Nonlinear Elastic Wedges
,”
Int. J. Non-Linear Mech.
,
84
, pp.
116
129
.
9.
Golgoon
,
A.
, and
Yavari
,
A.
,
2018
, “
Nonlinear Elastic Inclusions in Anisotropic Solids
,”
J. Elast.
,
130
(2), pp.
239
269
.
10.
Golgoon
,
A.
, and
Yavari
,
A.
,
2017
, “
On the Stress Field of a Nonlinear Elastic Solid Torus With a Toroidal Inclusion
,”
J. Elast.
,
128
(
1
), pp.
115
145
.
11.
Golgoon
,
A.
, and
Yavari
,
A.
,
2018
, “
Line and Point Defects in Nonlinear Anisotropic Solids
,”
Z. Für Angew. Math. Phys.
,
69
(
3
), p.
81
.
12.
Sadeghi
,
F.
,
Jalalahmadi
,
B.
,
Slack
,
T. S.
,
Raje
,
N.
, and
Arakere
,
N. K.
,
2009
, “
A Review of Rolling Contact Fatigue
,”
ASME J. Tribol.
,
131
(
4
), p.
041403
.
13.
Zhao
,
D.
,
Banks
,
S. A.
,
Mitchell
,
K. H.
,
D'Lima
,
D. D.
,
Colwell
,
C. W.
, and
Fregly
,
B. J.
,
2007
, “
Correlation Between the Knee Adduction Torque and Medial Contact Force for a Variety of Gait Patterns
,”
J. Orthop. Res.
,
25
(
6
), pp.
789
797
.
14.
Mollaeian
,
K.
,
Liu
,
Y.
,
Bi
,
S.
, and
Ren
,
J.
,
2018
, “
Atomic Force Microscopy Study Revealed Velocity-Dependence and Nonlinearity of Nanoscale Poroelasticity of Eukaryotic Cells
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
65
73
.
15.
Firrone
,
C. M.
, and
Zucca
,
S.
,
2011
, “
Modelling Friction Contacts in Structural Dynamics and Its Application to Turbine Bladed Disks
,”
Numerical Analysis—Theory and Application
, J. Awrejcewicz, ed.,
InTech
, Rijeka, Croatia.
16.
Kardel
,
K.
,
Ghaednia
,
H.
,
Carrano
,
A. L.
, and
Marghitu
,
D. B.
,
2017
, “
Experimental and Theoretical Modeling of Behavior of 3D-Printed Polymers Under Collision With a Rigid Rod
,”
Addit. Manuf.
,
14
, pp.
87
94
.
17.
Pawlowski
,
A. E.
,
Cordero
,
Z. C.
,
French
,
M. R.
,
Muth
,
T. R.
,
Carver
,
J. K.
,
Dinwiddie
,
R. B.
,
Elliott
,
A. M.
,
Shyam
,
A.
, and
Splitter
,
D. A.
,
2017
, “
Damage-Tolerant Metallic Composites Via Melt Infiltration of Additively Manufactured Preforms
,”
Mater. Des.
,
127
, pp.
346
351
.
18.
Ghaednia
,
H.
,
Wang
,
X.
,
Saha
,
S.
,
Xu
,
Y.
,
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Review of Elastic-Plastic Contact Mechanics
,”
ASME Appl. Mech. Rev.
,
69
(
6
), p.
060804
.
19.
Bhushan
,
B.
,
1996
, “
Contact Mechanics of Rough Surfaces in Tribology: Single Asperity Contact
,”
ASME Appl. Mech. Rev.
,
49
(
5
), pp.
275
298
.
20.
Bhushan
,
B.
,
1998
, “
Contact Mechanics of Rough Surfaces in Tribology: Multiple Asperity Contact
,”
Tribol. Lett.
,
4
(
1
), pp.
1
35
.
21.
Adams
,
G.
, and
Nosonovsky
,
M.
,
2000
, “
Contact Modeling-Forces
,”
Tribol. Int.
,
33
(
5–6
), pp.
431
442
.
22.
Johnson
,
K. L.
,
1987
,
Contact Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
23.
Jackson
,
R. L.
, and
Kogut
,
L.
,
2006
, “
A Comparison of Flattening and Indentation Approaches for Contact Mechanics Modeling of Single Asperity Contacts
,”
ASME J. Tribol.
,
128
(
1
), pp.
209
212
.
24.
Ghaednia
,
H.
,
Pope
,
S. A.
,
Jackson
,
R. L.
, and
Marghitu
,
D. B.
,
2016
, “
A Comprehensive Study of the Elasto-Plastic Contact of a Sphere and a Flat
,”
Tribol. Int.
,
93
, pp.
78
90
.
25.
Olsson
,
E.
, and
Larsson
,
P.-L.
,
2016
, “
A Unified Model for the Contact Behaviour Between Equal and Dissimilar Elastic–Plastic Spherical Bodies
,”
Int. J. Solids Struct.
,
81
, pp.
23
32
.
26.
Hertz
,
H.
,
1882
, “
Über Die Berührung Fester Elastischer Körper
,”
J. Für Die Reine Angew. Math.
,
92
, pp.
156
171
.
27.
Jackson
,
R. L.
, and
Green
,
I.
,
2005
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact against a Rigid Flat
,”
ASME J. Tribol.
,
127
(
2
), pp.
343
354
.
28.
Chang
,
W.-R.
,
1986
,
Contact, Adhesion, and Static Friction of Metallic Rough Surfaces
,
University of California
,
Berkeley, CA
.
29.
Hardy
,
C.
,
Baronet
,
C.
, and
Tordion
,
G.
,
1971
, “
The Elasto-Plastic Indentation of a Half-Space by a Rigid Sphere
,”
Int. J. Numer. Methods Eng.
,
3
(
4
), pp.
451
462
.
30.
Follansbee
,
P.
, and
Sinclair
,
G.
,
1984
, “
Quasi-Static Normal Indentation of an Elasto-Plastic Half-Space by a Rigid Sphere-I—Analysis
,”
Int. J. Solids Struct.
,
20
(
1
), pp.
81
91
.
31.
Sinclair
,
G.
,
Follansbee
,
P.
, and
Johnson
,
K.
,
1985
, “
Quasi-Static Normal Indentation of an Elasto-Plastic Half-Space by a Rigid Sphere-II—Results
,”
Int. J. Solids Struct.
,
21
(
8
), pp.
865
888
.
32.
Chang
,
W.
,
Etsion
,
I.
, and
Bogy
,
D. B.
,
1987
, “
An Elastic-Plastic Model for the Contact of Rough Surfaces
,”
ASME J. Tribol.
,
109
(
2
), pp.
257
263
.
33.
Kogut
,
L.
, and
Etsion
,
I.
,
2002
, “
Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat
,”
ASME J. Appl. Mech.
,
69
(
5
), pp.
657
662
.
34.
Zhao
,
B.
,
Zhang
,
S.
,
Wang
,
Q.
,
Zhang
,
Q.
, and
Wang
,
P.
,
2015
, “
Loading and Unloading of a Power-Law Hardening Spherical Contact Under Stick Contact Condition
,”
Int. J. Mech. Sci.
,
94
, pp.
20
26
.
35.
Li
,
L.
,
Wu
,
C.
, and
Thornton
,
C.
,
2001
, “
A Theoretical Model for the Contact of Elastoplastic Bodies
,”
Proc. Inst. Mech. Eng., Part C.
,
216
(
4
), pp.
421
431
.
36.
Shankar
,
S.
, and
Mayuram
,
M.
,
2008
, “
Effect of Strain Hardening in Elastic–Plastic Transition Behavior in a Hemisphere in Contact With a Rigid Flat
,”
Int. J. Solids Struct.
,
45
(
10
), pp.
3009
3020
.
37.
Shankar
,
S.
, and
Mayuram
,
M.
,
2008
, “
A Finite Element Based Study on the Elastic-Plastic Transition Behavior in a Hemisphere in Contact With a Rigid Flat
,”
ASME J. Tribol.
,
130
(
4
), p.
044502
.
38.
Lin
,
L. P.
, and
Lin
,
J. F.
,
2006
, “
A New Method for Elastic-Plastic Contact Analysis of a Deformable Sphere and a Rigid Flat
,”
ASME J. Tribol.
,
128
(
2
), pp.
221
229
.
39.
Brake
,
M.
,
2012
, “
An Analytical Elastic-Perfectly Plastic Contact Model
,”
Int. J. Solids Struct.
,
49
(
22
), pp.
3129
3141
.
40.
Brake
,
M.
,
2015
, “
An Analytical Elastic Plastic Contact Model With Strain Hardening and Frictional Effects for Normal and Oblique Impacts
,”
Int. J. Solids Struct.
,
62
, pp.
104
123
.
41.
Tabor
,
D.
,
2000
,
The Hardness of Metals
,
Oxford University Press
,
Oxford, UK
.
42.
Ishlinsky
,
A.
,
1944
, “
The Problem of Plasticity With Axial Symmetry and Brinell's Test
,”
J. Appl. Math. Mech.
,
8
, pp.
201
224
.
43.
Kogut
,
L.
, and
Komvopoulos
,
K.
,
2004
, “
Analysis of the Spherical Indentation Cycle for Elastic–Perfectly Plastic Solids
,”
J. Mater. Res.
,
19
(
12
), pp.
3641
3653
.
44.
Jackson
,
R. L.
,
Ghaednia
,
H.
, and
Pope
,
S.
,
2015
, “
A Solution of Rigid–Perfectly Plastic Deep Spherical Indentation Based on Slip-Line Theory
,”
Tribol. Lett.
,
58
(
3
), p.
47
.
45.
Rodriguez
,
S. A.
,
Alcala
,
J.
, and
Martins Souza
,
R.
,
2011
, “
Effects of Elastic Indenter Deformation on Spherical Instrumented Indentation Tests: The Reduced Elastic Modulus
,”
Philos. Mag.
,
91
(
7–9
), pp.
1370
1386
.
46.
Brake
,
M.
,
Reu
,
P. L.
, and
Aragon
,
D. S.
,
2017
, “
A Comprehensive Set of Impact Data for Common Aerospace Metals
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
6
), p.
061011
.
47.
Brinell
,
J.
,
1900
, “
Way of Determining the Hardness of Bodies and Some Applications of the Same
,”
Tek. Tidskr.
,
5
, p.
69
.
48.
Meyer
,
E.
,
1908
, “
Investigations of Hardness Testing and Hardness
,”
Phys. Z
,
9
, p.
66
.
49.
Biwa
,
S.
, and
Storåkers
,
B.
,
1995
, “
An Analysis of Fully Plastic Brinell Indentation
,”
J. Mech. Phys. Solids
,
43
(
8
), pp.
1303
1333
.
50.
Brizmer
,
V.
,
Zait
,
Y.
,
Kligerman
,
Y.
, and
Etsion
,
I.
,
2006
, “
The Effect of Contact Conditions and Material Properties on Elastic-Plastic Spherical Contact
,”
J. Mech. Mater. Struct.
,
1
(
5
), pp.
865
879
.
51.
Mesarovic
,
S. D.
, and
Fleck
,
N. A.
,
2000
, “
Frictionless Indentation of Dissimilar Elastic–Plastic Spheres
,”
Int. J. Solids Struct.
,
37
(
46–47
), pp.
7071
7091
.
52.
Sharma
,
A.
, and
Jackson
,
R. L.
,
2017
, “
A Finite Element Study of an Elasto-Plastic Disk or Cylindrical Contact against a Rigid Flat in Plane Stress With Bilinear Hardening
,”
Tribol. Lett.
,
65
(
3
), p.
112
.
53.
Jackson
,
R. L.
, and
Green
,
I.
,
2003
, “
A Finite Element Study of Elasto-Plastic Hemispherical Contact
,”
ASME
Paper No. 2003-TRIB-0268.
54.
Green
,
I.
,
2005
, “
Poisson Ratio Effects and Critical Valus in Spherical and Cylindrical Hertzian Contacts
,”
Appl. Mech. Eng.
,
10
(
3
), p.
451
.http://itzhak.green.gatech.edu/rotordynamics/Poisson_ratio_and_critical_values.pdf
You do not currently have access to this content.