This paper concerns wave reflection, transmission, and propagation in Timoshenko beams together with wave analysis of vibrations in Timoshenko beam structures. The transmission and reflection matrices for various discontinuities on a Timoshenko beam are derived. Such discontinuities include general point supports, boundaries, and changes in section. The matrix relations between the injected waves and externally applied forces and moments are also derived. These matrices can be combined to provide a concise and systematic approach to vibration analysis of Timoshenko beams or complex structures consisting of Timoshenko beam components. The approach is illustrated with several numerical examples.

1.
Graff
,
K. F.
, 1975,
Wave Motion in Elastic Solids
,
Ohio State University Press
.
2.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1987,
Structure-Borne Sound
,
Springer-Verlag
, Berlin.
3.
Miller
,
D. W.
, and
Von Flotow
,
A.
, 1989, “
A Traveling Wave Approach to Power Flow in Structural Networks
,”
J. Sound Vib.
0022-460X,
128
(
1
), pp.
145
162
.
4.
Beale
,
L. S.
, and
Accorsi
,
M. L.
, 1995, “
Power Flow in Two- and Three-Dimensional Frame Structures
,”
J. Sound Vib.
0022-460X,
185
(
4
), pp.
685
702
.
5.
Mace
,
B. R.
, 1984, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
0022-460X,
97
, pp.
237
246
.
6.
Harland
,
N. R.
,
Mace
,
B. R.
, and
Jones
,
R. W.
, 2001, “
Wave Propagation, Reflection and Transmission in Tunable Fluid-Filled Beams
,”
J. Sound Vib.
0022-460X,
241
(
5
), pp.
735
754
.
7.
Tan
,
C. A.
, and
Kang
,
B.
, 1998, “
Wave Reflection and Transmission in an Axially Strained, Rotating Timoshenko Shaft
,”
J. Sound Vib.
0022-460X,
213
(
3
), pp.
483
510
.
8.
Tan
,
C. A.
, and
Kang
,
B.
, 1999, “
Free Vibration of Axially Loaded, Rotating Timoshenko Shaft Systems by the Wave-Train Closure Principle
,”
Int. J. Solids Struct.
0020-7683,
36
, pp.
4031
4049
.
9.
Doyle
,
J. F.
, 1989,
Wave Propagation in Structures
,
Spring-Verlag
, New York.
10.
Rayleigh
,
L.
, 1926,
Theory of Sound
,
Macmillan
, New York.
11.
Timoshenko
,
S. P.
, 1921, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
0031-8086,
41
, pp.
744
746
.
12.
Timoshenko
,
S. P.
, 1922, “
On the Transverse Vibrations of Bars of Uniform Cross Sections
,”
Philos. Mag.
0031-8086,
43
, pp.
125
131
.
13.
Huang
,
T. C.
, 1961, “
The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams with Simple End Conditions
,”
ASME J. Appl. Mech.
0021-8936,
28
, pp.
579
584
.
14.
Anderson
,
R. A.
, 1953, “
Flexural Vibrations in Uniform Beams according to the Timoshenko Theory
,”
ASME J. Appl. Mech.
0021-8936,
75
, pp.
504
510
.
15.
Lueschen
,
G. G. G.
,
Bergman
,
L. A.
, and
McFarland
,
D. M.
, 1996, “
Green’s Functions for Uniform Timoshenko Beams
,”
J. Sound Vib.
0022-460X,
194
(
1
), pp.
93
102
.
16.
Banerjee
,
J. R.
, 2004, “
Development of an Exact Dynamic Stiffness Matrix for Free Vibration Analysis of a Twisted Timoshenko Beam
,”
J. Sound Vib.
0022-460X,
270
, pp.
379
401
.
17.
Corn
,
S.
,
Bouhaddi
,
N.
, and
Piranda
,
J.
, 1997, “
Transverse Vibrations of Short Beams: Finite Element Models Obtained by a Condensation Method
,”
J. Sound Vib.
0022-460X,
201
(
3
), pp.
353
363
.
18.
Wang
,
C. H.
, and
Rose
,
L. R. F.
, 2003, “
Wave Reflection and Transmission in Beams Containing Delamination and Inhomogeneity
,”
J. Sound Vib.
0022-460X,
264
, pp.
851
872
.
19.
Cowper
,
G. R.
, 1966, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
335
340
, June.
You do not currently have access to this content.