This paper concerns wave reflection, transmission, and propagation in Timoshenko beams together with wave analysis of vibrations in Timoshenko beam structures. The transmission and reflection matrices for various discontinuities on a Timoshenko beam are derived. Such discontinuities include general point supports, boundaries, and changes in section. The matrix relations between the injected waves and externally applied forces and moments are also derived. These matrices can be combined to provide a concise and systematic approach to vibration analysis of Timoshenko beams or complex structures consisting of Timoshenko beam components. The approach is illustrated with several numerical examples.
Issue Section:
Technical Papers
1.
Graff
, K. F.
, 1975, Wave Motion in Elastic Solids
, Ohio State University Press
.2.
Cremer
, L.
, Heckl
, M.
, and Ungar
, E. E.
, 1987, Structure-Borne Sound
, Springer-Verlag
, Berlin.3.
Miller
, D. W.
, and Von Flotow
, A.
, 1989, “A Traveling Wave Approach to Power Flow in Structural Networks
,” J. Sound Vib.
0022-460X, 128
(1
), pp. 145
–162
.4.
Beale
, L. S.
, and Accorsi
, M. L.
, 1995, “Power Flow in Two- and Three-Dimensional Frame Structures
,” J. Sound Vib.
0022-460X, 185
(4
), pp. 685
–702
.5.
Mace
, B. R.
, 1984, “Wave Reflection and Transmission in Beams
,” J. Sound Vib.
0022-460X, 97
, pp. 237
–246
.6.
Harland
, N. R.
, Mace
, B. R.
, and Jones
, R. W.
, 2001, “Wave Propagation, Reflection and Transmission in Tunable Fluid-Filled Beams
,” J. Sound Vib.
0022-460X, 241
(5
), pp. 735
–754
.7.
Tan
, C. A.
, and Kang
, B.
, 1998, “Wave Reflection and Transmission in an Axially Strained, Rotating Timoshenko Shaft
,” J. Sound Vib.
0022-460X, 213
(3
), pp. 483
–510
.8.
Tan
, C. A.
, and Kang
, B.
, 1999, “Free Vibration of Axially Loaded, Rotating Timoshenko Shaft Systems by the Wave-Train Closure Principle
,” Int. J. Solids Struct.
0020-7683, 36
, pp. 4031
–4049
.9.
Doyle
, J. F.
, 1989, Wave Propagation in Structures
, Spring-Verlag
, New York.10.
Rayleigh
, L.
, 1926, Theory of Sound
, Macmillan
, New York.11.
Timoshenko
, S. P.
, 1921, “On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,” Philos. Mag.
0031-8086, 41
, pp. 744
–746
.12.
Timoshenko
, S. P.
, 1922, “On the Transverse Vibrations of Bars of Uniform Cross Sections
,” Philos. Mag.
0031-8086, 43
, pp. 125
–131
.13.
Huang
, T. C.
, 1961, “The Effect of Rotatory Inertia and of Shear Deformation on the Frequency and Normal Mode Equations of Uniform Beams with Simple End Conditions
,” ASME J. Appl. Mech.
0021-8936, 28
, pp. 579
–584
.14.
Anderson
, R. A.
, 1953, “Flexural Vibrations in Uniform Beams according to the Timoshenko Theory
,” ASME J. Appl. Mech.
0021-8936, 75
, pp. 504
–510
.15.
Lueschen
, G. G. G.
, Bergman
, L. A.
, and McFarland
, D. M.
, 1996, “Green’s Functions for Uniform Timoshenko Beams
,” J. Sound Vib.
0022-460X, 194
(1
), pp. 93
–102
.16.
Banerjee
, J. R.
, 2004, “Development of an Exact Dynamic Stiffness Matrix for Free Vibration Analysis of a Twisted Timoshenko Beam
,” J. Sound Vib.
0022-460X, 270
, pp. 379
–401
.17.
Corn
, S.
, Bouhaddi
, N.
, and Piranda
, J.
, 1997, “Transverse Vibrations of Short Beams: Finite Element Models Obtained by a Condensation Method
,” J. Sound Vib.
0022-460X, 201
(3
), pp. 353
–363
.18.
Wang
, C. H.
, and Rose
, L. R. F.
, 2003, “Wave Reflection and Transmission in Beams Containing Delamination and Inhomogeneity
,” J. Sound Vib.
0022-460X, 264
, pp. 851
–872
.19.
Cowper
, G. R.
, 1966, “The Shear Coefficient in Timoshenko’s Beam Theory
,” ASME J. Appl. Mech.
0021-8936,33
, pp. 335
–340
, June.Copyright © 2005
by American Society of Mechanical Engineers
You do not currently have access to this content.