In this paper, wave vibration analysis of axially loaded bending-torsion coupled composite beam structures is presented. It includes the effects of axial force, shear deformation, and rotary inertia; namely, it is for an axially loaded composite Timoshenko beam. The study also includes the material coupling between the bending and torsional modes of deformations that is usually present in laminated composite beam due to ply orientation. From a wave standpoint, vibrations propagate, reflect, and transmit in a structure. The transmission and reflection matrices for various discontinuities on an axially loaded materially coupled composite Timoshenko beam are derived. Such discontinuities include general point supports, boundaries, and changes in section. The matrix relations between the injected waves and externally applied forces and moments are also derived. These matrices can be combined to provide a concise and systematic approach to vibration analysis of axially loaded materially coupled composite Timoshenko beams or complex structures consisting of such beam components. The systematic approach is illustrated through numerical examples for which comparative results are available in the literature.

1.
Weisshaar
,
T. A.
, and
Foist
,
B. L.
, 1985, “
Vibration Tailoring of Advanced Composite Lifting Faces
,”
J. Aircr.
0021-8669,
22
(
2
), pp.
141
147
.
2.
Migunet
,
P.
, and
Dugundji
,
J.
, 1990, “
Experiments and Analysis for Composite Blades Under Large Deflection, Part I: Static Behavior, Part II: Dynamic Behavior
,”
AIAA J.
0001-1452,
28
, pp.
1573
1588
.
3.
Abarcar
,
R. B.
, and
Cunniff
,
P. F.
, 1972, “
The Vibration of Cantilever Beams of Fiber Reinforced Materials
,”
J. Compos. Mater.
0021-9983,
6
, pp.
504
517
.
4.
Banerjee
,
J. R.
, 2001, “
Explicit Analytical Expressions for Frequency Equation and Mode Shapes of Composite Beams
,”
Int. J. Solids Struct.
0020-7683,
38
, pp.
2415
2426
.
5.
Hodges
,
D. H.
, 1990, “
A Mixed Variational Formulation Based on Exact Intrinsic Equations for Dynamics of Moving Beams
,”
Int. J. Solids Struct.
0020-7683,
26
, pp.
1253
1273
.
6.
Hodges
,
D. H.
,
Atilgan
,
A. R.
,
Fulton
,
M. V.
, and
Rehfield
,
L. W.
, 1991, “
Formulation and Evaluation of an Analytical Model for Composite Box Beams
,”
J. Am. Helicopter Soc.
0002-8711,
36
, pp.
23
35
.
7.
Banerjee
,
J. R.
, and
Williams
,
F. W.
, 1995, “
Free Vibration of Composite Beams—An Exact Method Using Symbolic Computation
,”
J. Aircr.
0021-8669,
32
(
3
), pp.
636
642
.
8.
Timoshenko
,
S. P.
, 1921, “
On the Correction for Shear of the Differential Equation for Transverse Vibrations of Prismatic Bars
,”
Philos. Mag.
0031-8086,
41
, pp.
744
746
.
9.
Timoshenko
,
S. P.
, 1922, “
On the Transverse Vibrations of Bars of Uniform Cross Sections
,”
Philos. Mag.
0031-8086,
43
, pp.
125
131
.
10.
Teoh
,
L. S.
, and
Huang
,
C. C.
, 1977, “
The Vibration of Beams of Fiber Reinforced Materials
,”
J. Sound Vib.
0022-460X,
51
(
4
), pp.
467
473
.
11.
Teh
,
K. K.
, and
Huang
,
C. C.
, 1980, “
The Effect of Fiber Orientation on Free Vibrations of Composite Beams
,”
J. Sound Vib.
0022-460X,
69
(
2
), pp.
327
337
.
12.
Banerjee
,
J. R.
, 2001, “
Frequency Equation and Mode Shape Formulae for Composite Timoshenko Beams
,”
Compos. Struct.
0263-8223,
51
, pp.
381
388
.
13.
Teh
,
K. K.
, and
Huang
,
C. C.
, 1979, “
The Vibrations of Generally Orthotropic Beams, A Finite Element Approach
,”
J. Sound Vib.
0022-460X,
62
(
2
), pp.
195
206
.
14.
Banerjee
,
J. R.
, 1996, “
Exact Dynamic Stiffness Matrix for Composite Timoshenko Beams With Applications
,”
J. Sound Vib.
0022-460X,
194
(
4
), pp.
573
585
.
15.
Howson
,
W. P.
, and
Williams
,
F. W.
, 1973, “
Natural Frequencies of Frames With Axially Loaded Timoshenko Members
,”
J. Sound Vib.
0022-460X,
26
, pp.
503
515
.
16.
Cheng
,
F. Y.
, and
Tseng
,
W. H.
, 1973, “
Dynamic Matrix of Timoshenko Beam Columns
,”
ASCE J. Struct. Div.
0044-8001,
99
, pp.
527
549
.
17.
Banerjee
,
J. R.
, 1998, “
Free Vibration of Axially Loaded Composite Timoshenko Beams Using the Dynamic Stiffness Matrix Method
,”
Compos. Struct.
0263-8223,
69
, pp.
197
208
.
18.
Li
,
J.
,
Shen
,
R.
,
Hua
,
H.
, and
Jin
,
X.
, 2004, “
Bending-Torsional Coupled Dynamic Response of Axially Loaded Composite Timoshenko Thin-Walled Beam With Closed Cross-Section
,”
Compos. Struct.
0263-8223,
64
, pp.
23
35
.
19.
Graff
,
K. F.
, 1975,
Wave Motion in Elastic Solids
,
Ohio State University Press
, Columbus.
20.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1987,
Structure-Borne Sound
,
Springer-Verlag
, Berlin.
21.
Doyle
,
J. F.
, 1989,
Wave Propagation in Structures
,
Springer-Verlag
, Berlin.
22.
Mace
,
B. R.
, 1984, “
Wave Reflection and Transmission in Beams
,”
J. Sound Vib.
0022-460X,
97
, pp.
237
246
.
23.
Tan
,
C. A.
, and
Kang
,
B.
, 1998, “
Wave Reflection and Transmission in an Axially Strained, Rotating Timoshenko Shaft
,”
J. Sound Vib.
0022-460X,
213
(
3
), pp.
483
510
.
24.
Harland
,
N. R.
,
Mace
,
B. R.
, and
Jones
,
R. W.
, 2001, “
Wave Propagation, Reflection and Transmission in Tunable Fluid-Filled Beams
,”
J. Sound Vib.
0022-460X,
241
(
5
), pp.
735
754
.
25.
Mei
,
C.
, and
Mace
,
B. R.
, 2005, “
Wave Reflection and Transmission in Timoshenko Beams and Wave Analysis of Timoshenko Beam Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
382
394
.
26.
Mei
,
C.
, 2005, “
Effect of Material Coupling on Wave Vibration of Composite Timoshenko Beam Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
127
, pp.
333
340
.
You do not currently have access to this content.