In this paper, the long-standing problem of designing disturbance observers for multi-input multi-output (MIMO) systems is solved. The disturbance observer presented here has a simple structure equivalent to that of the internal model control (IMC), thereby there is no need for the system inversion. Techniques to design the proposed disturbance observer are given. Furthermore, the design procedure is illustrated via examples for different MIMO systems.

1.
Ohishi
,
K.
,
Nakao
,
M.
,
Ohnishi
,
K.
, and
Miyachi
,
K.
, 1987, “
Microprocessor-Controlled DC Motor for Load-Insensitive Position Servo System
,”
IEEE Trans. Ind. Electron.
0278-0046,
IE-34
(
1
), pp.
44
49
.
2.
Umeno
,
T.
, and
Hori
,
Y.
, 1991, “
Robust Speed Control of DC Servomotors Using Modern Two-Degree-of-Freedom Controller Design
,”
IEEE Trans. Ind. Electron.
0278-0046,
38
(
5
), pp.
363
368
.
3.
Lee
,
H. S.
, 1994, “
Robust Digital Tracking Controllers for High-Speed/High-Accuracy Positioning Systems
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley.
4.
Tesfaye
,
A.
, 1994, “
Theory and Implementation of Robust Performance Digital Servo Controllers
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley.
5.
Bickel
,
R. J.
, 1996, “
Disturbance Observer Based Robot Control With Applications to Force Control
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley.
6.
White
,
M. T.
, 1997, “
Control Techniques for Increased Disturbance Rejection and Tracking Accuracy in Magnetic Disk Drives
,” Ph.D. thesis, Department of Mechanical Engineering, University of California, Berkeley.
7.
Kempf
,
C. J.
, and
Kobayashi
,
S.
, 1999, “
Disturbance Observer and Feedforward Design for a High-Speed Direct-Drive Positioning Table
,”
IEEE Trans. Control Syst. Technol.
1063-6536,
7
(
5
), pp.
513
526
.
8.
Schrijver
,
E.
, and
van Dijk
,
J.
, 2002, “
Disturbance Observers for Rigid Mechanical System: Equivalence, Stability, and Design
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
4
), pp.
539
548
.
9.
Choi
,
Y.
,
Yang
,
K.
,
Chung
,
W. K.
,
Kim
,
H. R.
, and
Suh
,
I. H.
, 2003, “
On the Robustness and Performance of Disturbance Observers for Second-Order Systems
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
2
), pp.
315
320
.
10.
Tan
,
K. K.
,
Lee
,
T. H.
,
Dou
,
H. F.
,
Chin
,
S. J.
, and
Zhao
,
S.
, 2003, “
Precision Motion Control With Disturbance Observers for Pulsewidth-Modulated-Drive Permanent-Magnet Linear Motors
,”
IEEE Trans. Magn.
0018-9464,
39
(
3
), pp.
1813
1818
.
11.
Shahruz
,
S. M.
, 2000, “
Performance Enhancement of a Class of Nonlinear Systems by Disturbance Observers
,”
IEEE/ASME Trans. Mechatron.
1083-4435,
5
(
3
), pp.
319
323
.
12.
Shahruz
,
S. M.
,
Cloet
,
C.
, and
Tomizuka
,
M.
, 2003, “
Suppression of Effects of Non-Linearities in a Class of Non-Linear Systems by Disturbance Observers
,”
J. Sound Vib.
0022-460X,
249
(
2
), pp.
405
415
.
13.
Shahruz
,
S. M.
, and
Siva
,
L. R.
, 2004, “
Suppression of Chaos in a Class of Non-Linear Systems by Disturbance Observers
,”
J. Sound Vib.
0022-460X,
271
(
1–2
), pp.
481
491
.
14.
Liu
,
C.-S.
, and
Peng
,
H.
, 2002, “
Inverse-Dynamics Based State and Disturbance Observers for Linear Time-Invariant Systems
,”
ASME J. Dyn. Syst., Meas., Control
0022-0434,
124
(
3
), pp.
375
381
.
15.
MATLAB, Mathworks, Inc., Natick, MA.
16.
Morari
,
M.
, and
Zafiriou
,
E.
, 1999,
Robust Process Control
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
17.
Datta
,
A.
, 1998,
Adaptive Internal Model Control
,
Springer-Verlag
,
New York
.
18.
Brosilow
,
C.
, and
Joseph
,
B.
, 2002,
Techniques of Model-based Control
,
Prentice-Hall
,
Upper Saddle, NJ
.
You do not currently have access to this content.