This paper concerns in-plane vibration analysis of coupled bending and longitudinal vibrations in H- and T-shaped planar frame structures. An exact analytical solution is obtained using wave vibration approach. Timoshenko beam theory, which takes into account the effects of both rotary inertia and shear distortion, is applied in modeling the flexural vibrations in the planar frame. Reflection and transmission matrices corresponding to incident waves arriving at the “T” joint from various directions are obtained. Bending and longitudinal waves generated by a combination of point longitudinal forces, point bending forces, and bending moments are also obtained. Assembling these wave relations provides a concise and systematic approach to both free and forced vibration analyses of coupled bending and longitudinal vibrations in H- and T-shaped planar frame structures. Natural frequencies, modeshapes, and forced responses are obtained from wave vibration standpoint. The results are compared to results available in literature. Good agreement has been reached.

1.
Lee
,
H. P.
, and
Ng
,
T. Y.
, 1994, “
In-Plane Vibration of Planar Frame Structures
,”
J. Sound Vib.
0022-460X,
172
(
3
), pp.
420
427
.
2.
Hambric
,
S. A.
,
Cuschieri
,
J. M.
,
Burroughs
,
C. B.
,
Halkyard
,
C. R.
,
Mace
,
B. R.
, and
Szwerc
,
R. P.
, 2002, “
Low-Frequency Measurements and Predictions of the Structural-Acoustic Properties of the INCE Standard T-Beam Structure
,”
Noise Control Eng. J.
0736-2501,
50
(
3
), pp.
90
99
.
3.
Hambric
,
S. A.
,
Burroughs
,
C. B.
, and
Szwerc
,
R. P.
, 1999, “
Predictions of Structural Intensity Fields Using Solid Finite Elements
,”
Noise Control Eng. J.
0736-2501,
47
(
6
), pp.
209
217
.
4.
Szwerc
,
R. P.
,
Burroughs
,
C. B.
,
Hambric
,
S. A.
, and
McDevitt
,
T. E.
, 2000, “
Power Flow in Coupled Bending and Longitudinal Waves in Beams
,”
J. Acoust. Soc. Am.
0001-4966,
107
(
6
), pp.
3186
3195
.
5.
Mace
,
B. R.
, 1997, “
Wave Analysis of the T-Beam
,”
Proceedings of INTERNOISE 97
, Budapest, Hungary, Aug. 25–27, 1997, pp.
1569
1572
.
6.
Graff
,
K. F.
, 1975,
Wave Motion in Elastic Solids
,
Ohio State University Press
,
Columbus, OH
.
7.
Cremer
,
L.
,
Heckl
,
M.
, and
Ungar
,
E. E.
, 1987,
Structure-Borne Sound
,
Springer-Verlag
,
Berlin
.
8.
Doyle
,
J. F.
, 1989,
Wave Propagation in Structures
,
Springer-Verlag
,
New York
.
9.
Wang
,
C. H.
, and
Rose
,
L. R. F.
, 2003, “
Wave Reflection and Transmission in Beams Containing Delamination and Inhomogeneity
,”
J. Sound Vib.
0022-460X,
264
, pp.
851
872
.
10.
Mei
,
C.
, and
Mace
,
B. R.
, 2005, “
Wave Reflection and Transmission in Timoshenko Beams and Wave Analysis of Timoshenko Beam Structures
,”
ASME J. Vibr. Acoust.
0739-3717,
127
(
4
), pp.
382
394
.
11.
Cowper
,
G. R.
, 1966, “
The Shear Coefficient in Timoshenko’s Beam Theory
,”
ASME J. Appl. Mech.
0021-8936,
33
, pp.
335
340
.
You do not currently have access to this content.